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Today

I Deal with numerical problems



SubsetSum ∈ NP-complete

SubsetSum

Input: a set of positive integers A = {a1, a2, . . . , ak}, and a t ∈ N
Question: is there a set B ⊆ A such that

∑
ai∈B ai = t ?

SubsetSum is in NP

I given the set B ⊆ A, create the sum of the elements in B and
compare with t

3SAT ≤P SubsetSum

1. for each variable xi create two decimal numbers yi and zi
I intuition:

– select one of yi, zi in B
– if yi is in B, then xi = TRUE
– if zi is in B, then xi = FALSE

I each yi, zi has two parts:
– a variable part
– a clause part
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x1 x2 x3 . . . xn c1 c2 . . . cm
y1 1 0 0 . . . 0 1 0 . . . 0
z1 1 0 0 . . . 0 0 0 . . . 0
y2 1 0 . . . 0 0 1 . . . 0
z2 1 0 . . . 0 1 0 . . . 0
y3 1 . . . 0 1 1 . . . 0
z3 1 . . . 0 0 0 . . . 1
...

. . .
...

...
yn 1 0 0 . . . 1
zn 1 0 0 . . . 0
g1 1 0 . . . 0
h1 1 0 . . . 0
g2 1 . . . 0
h2 1 . . . 0
...

. . .

gm 1
hm 1

t 1 1 1 . . . 1 3 3 . . . 3



Example

(x1 ∨ x̄2 ∨ x3) ∧ (x2 ∨ x3 ∨ x4) ∧ (x̄1 ∨ x̄3 ∨ x4)

x1 x2 x3 x4 c1 c2 c3
y1 1 0 0 0 1 0 0
z1 1 0 0 0 0 0 1
y2 1 0 0 0 1 0
z2 1 0 0 1 0 0
y3 1 0 1 1 0
z3 1 0 0 0 1
y4 1 0 1 1
z4 1 0 0 0
g1 1 0 0
h1 1 0 0
g2 1 0
h2 1 0
g3 1
h3 1

W 1 1 1 1 3 3 3



SubsetSum ∈ NP-complete

2. Size of the created instance:
I |A| = 2n+ 2m
I each created integer has at most n+m digits (including t)
→ integers in the interval [0, 10n+m]
→ binary representation: at most log2 10

n+m = O(n+m) bits

3. F is satisfiable iff there is a set B ⊆ A with
∑

ai∈B ai = t

(⇒)
I assume that F is satisfiable

I for each xi:
– if xi = TRUE, then add yi to B
– if xi = FALSE, then add zi to B

I for each cj :
– if 1 literal is TRUE, then add both gj and hj in B
– if 2 literal are TRUE, then add gj in B

I B is a SubsetSum
– left part of t: we select only one of yi and zi, for each 1 ≤ i ≤ n
– right part of t: we select gj and hj in order to have exactly 3 ones
per clause
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SubsetSum ∈ NP-complete

3. F is satisfiable iff there is a set B ⊆ A with
∑

ai∈B ai = t

(⇐)
I assume there is a set B such that

∑
ai∈B ai = t

I each column contains at most 5 ones → there is not a “carry”

I there is no other way to have 1 in the variable part of t except from
selecting exactly one of each yi and zi

I then, set:
– xi = TRUE, if yi ∈ B
– xi = FALSE, if zi ∈ B

I there is no way to have 3 in the clause part of t by selecting only gj
and hj

I thus, at least one literal (yi, zi) should be one for each clause column

I therefore, this assignment satisfies F
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An algorithm for SubsetSum

I dynamic programming

I consider the integers sorted in non-decreasing order:
a1 ≤ a2 ≤ . . . ≤ an

I S[i, q] =

 True, if there is a SubsetSum among the i first
integers which sums up exactly to q

False, otherwise

Algorithm

1: Initialization:
– S[i, 0] = True, for any i ≥ 1

– S[1, q] =

{
True, if q = a1
False, otherwise

2: for i = 1 to n do
3: for q = 1 to t do
4: S[i, q] = S[i− 1, q] or S[i− 1, q − ai]



An algorithm for SubsetSum

I dynamic programming

I consider the integers sorted in non-decreasing order:
a1 ≤ a2 ≤ . . . ≤ an

I S[i, q] =

 True, if there is a SubsetSum among the i first
integers which sums up exactly to q

False, otherwise

Algorithm

1: Initialization:
– S[i, 0] = True, for any i ≥ 1

– S[1, q] =

{
True, if q = a1
False, otherwise

2: for i = 1 to n do
3: for q = 1 to t do
4: S[i, q] = S[i− 1, q] or S[i− 1, q − ai]



An algorithm for SubsetSum

I dynamic programming

I consider the integers sorted in non-decreasing order:
a1 ≤ a2 ≤ . . . ≤ an

I S[i, q] =

 True, if there is a SubsetSum among the i first
integers which sums up exactly to q

False, otherwise

Algorithm

1: Initialization:
– S[i, 0] = True, for any i ≥ 1

– S[1, q] =

{
True, if q = a1
False, otherwise

2: for i = 1 to n do
3: for q = 1 to t do
4: S[i, q] = S[i− 1, q] or S[i− 1, q − ai]



An algorithm for SubsetSum

I dynamic programming

I consider the integers sorted in non-decreasing order:
a1 ≤ a2 ≤ . . . ≤ an

I S[i, q] =

 True, if there is a SubsetSum among the i first
integers which sums up exactly to q

False, otherwise

Algorithm

1: Initialization:
– S[i, 0] = True, for any i ≥ 1

– S[1, q] =

{
True, if q = a1
False, otherwise

2: for i = 1 to n do
3: for q = 1 to t do
4: S[i, q] = S[i− 1, q] or S[i− 1, q − ai]



An algorithm for SubsetSum

I Example: A = {2, 3, 4, 6, 8} and t = 11

q
0 1 2 3 4 5 6 7 8 9 10 11

i

1 T
2 T
3 T
4 T
5 T



An algorithm for SubsetSum

I Example: A = {2, 3, 4, 6, 8} and t = 11

q
0 1 2 3 4 5 6 7 8 9 10 11

i

1 T
2 T
3 T
4 T
5 T

S[i, 0] = True, for any i ≥ 1



An algorithm for SubsetSum

I Example: A = {2, 3, 4, 6, 8} and t = 11

q
0 1 2 3 4 5 6 7 8 9 10 11

i

1 T F T F F F F F F F F F
2 T
3 T
4 T
5 T

S[1, q] =

{
True, if q = a1
False, otherwise
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I Example: A = {2, 3, 4, 6, 8} and t = 11

q
0 1 2 3 4 5 6 7 8 9 10 11
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5 T

S[i, q] = S[i− 1, q] or S[i− 1, q − ai]
S[2, 2] = S[1, 2] or S[1,−1]
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I Example: A = {2, 3, 4, 6, 8} and t = 11
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An algorithm for SubsetSum

I Example: A = {2, 3, 4, 6, 8} and t = 11

q
0 1 2 3 4 5 6 7 8 9 10 11

i
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2 T F T T F T F F F F F F
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I there is a TRUE in column q = 11, hence 〈A, t〉 ∈ SubsetSum
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I Example: A = {2, 3, 4, 6, 8} and t = 11

q
0 1 2 3 4 5 6 7 8 9 10 11

i

1 T F T F F F F F F F F F
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I S[3, 3] = S[2, 3] or S[2,−1], so a3 6∈ B

I S[2, 3] = S[1, 3] or S[1, 0], so a2 ∈ B, a1 6∈ B
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An algorithm for SubsetSum

I input: I = 〈A, t〉

I size of the input:

|I| = log2 t +
∑
ai∈A

log2 ai

= O(log2 t)

I complexity of the algorithm:

O(n · t) = O(n · 2|I|)

I that is, exponential to the size of the input !
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Pseudopolynomial algorithms

I |I|1: the encoding of the input in unary

I example: SubsetSum

|I|1 = t +
∑
ai∈A

ai

then the complexity of the algorithm is polynomial:

O(n · t) = O(n · |I|1)

I Definition: we call an algorithm pseudopolynomial if its complexity
is polynomial to the size of the input, when this is encoded in unary.

I Definition: NP-complete problems that admit a
pseudopolynomial algorithm are called weakly NP-complete.

I Definition: we call a problem strong or unary NP-complete if it
remains NP-complete even when the input is encoded in unary.
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remains NP-complete even when the input is encoded in unary.
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Observations

I where is the problem with the reduction of SubsetSum if the input
is encoded in unary?

I each created integer has at most n+m digits (including t)
→ integers in the interval [0, 10n+m]
→ unary representation: 10n+m symbols per integer

I the size of the created input is not polynomial with respect to the
size of the initial input

I are there numerical problems that are strong NP-complete?
I YES
I 3-Partition, Bin-Packing, . . .

I Attention! if A ≤P B and A is weakly NP-complete, then we
only prove that B is weakly NP-complete
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The 3-Dimensional Matching problem

3-DM

Input: three sets A,B,C of vertices of the same cardinality
|A| = |B| = |C| = n, a set M ⊆ A×B × C of
hyper-edges (triangles)

Question: is there a set M ′ ⊆M such that |M ′| = n and all vertices
appear exactly once in M ′ ?

a1 a2 a3

b1

b2

b3

c1

c2

c3

I 3-DM is NP-complete in the strong sense
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The 3-Partition problem

3-Partition

Input: a set of positive integers S = {s1, s2, . . . , s3n},
where

∑
si∈S = n · t and t

4 ≤ si ≤ t
2 for each si ∈ A

Question: can S be partitioned into n disjoint sets S1, S2, . . . , Sn

such that
∑

si∈Sj
si = t, for 1 ≤ j ≤ n ?

I observation: each Sj should have exactly 3 integers

4

4

8

5

5

6
4

5

7

t = 16

I 3-Partition is NP-complete in the strong sense



Another problem

Bin-Packing

Input: a set of items A, a size s(a) for each a ∈ A, a positive
integer capacity C, and a positive integer k

Question: is there a partition of A into disjoint sets A1, A2, . . . , Ak

such that the total size of the elements in each set Aj

does not exceed the capacity C, i.e.,
∑

a∈Aj
s(a) ≤ C ?

Show that this problem is NP-complete
Is it strongly or weakly NP-complete?
(try to give the strongest result)


