Fundamental Computer Science

Denis Trystram, inspired by Giorgio Lucarelli

March, 2020

Today

- Deal with numerical problems

SubsetSum \in NP-COMPLETE

SubsetSum
Input: a set of positive integers $A=\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$, and a $t \in \mathbb{N}$ Question: is there a set $B \subseteq A$ such that $\sum_{a_{i} \in B} a_{i}=t$?

SubsetSum \in NP-complete

SubsetSum

Input: a set of positive integers $A=\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$, and a $t \in \mathbb{N}$ Question: is there a set $B \subseteq A$ such that $\sum_{a_{i} \in B} a_{i}=t$?

SubsetSum is in NP

- given the set $B \subseteq A$, create the sum of the elements in B and compare with t

SubsetSum \in NP-COMPLETE

SubsetSum

Input: a set of positive integers $A=\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$, and a $t \in \mathbb{N}$ Question: is there a set $B \subseteq A$ such that $\sum_{a_{i} \in B} a_{i}=t$?

SubsetSum is in NP

- given the set $B \subseteq A$, create the sum of the elements in B and compare with t

3 SAT $\leq_{\text {P }}$ SUBSETSUM

1. for each variable x_{i} create two decimal numbers y_{i} and z_{i}

- intuition:
- select one of y_{i}, z_{i} in B
- if y_{i} is in B, then $x_{i}=$ TRUE
- if z_{i} is in B, then $x_{i}=$ FALSE

SubsetSum \in NP-COMPLETE

SubsetSum

Input: a set of positive integers $A=\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$, and a $t \in \mathbb{N}$ Question: is there a set $B \subseteq A$ such that $\sum_{a_{i} \in B} a_{i}=t$?

SubsetSum is in NP

- given the set $B \subseteq A$, create the sum of the elements in B and compare with t

3 SAT \leq p SubsetSum

1. for each variable x_{i} create two decimal numbers y_{i} and z_{i}

- intuition:
- select one of y_{i}, z_{i} in B
- if y_{i} is in B, then $x_{i}=$ TRUE
- if z_{i} is in B, then $x_{i}=$ FALSE
- each y_{i}, z_{i} has two parts:
- a variable part
- a clause part

	x_{1}	x_{2}	x_{3}	\ldots	x_{n}	c_{1}	c_{2}	\ldots	c_{m}
y_{1}	1	0	0	\ldots	0	1	0	\ldots	0
z_{1}	1	0	0	\ldots	0	0	0	\ldots	0
y_{2}		1	0	\ldots	0	0	1	\ldots	0
z_{2}		1	0	\ldots	0	1	0	\ldots	0
y_{3}			1	\ldots	0	1	1	\ldots	0
z_{3}			1	\ldots	0	0	0	\ldots	1
\vdots				\ddots	\vdots			\vdots	
y_{n}					1	0	0	\ldots	1
z_{n}					1	0	0	\ldots	0
g_{1}						1	0	\ldots	0
h_{1}						1	0	\ldots	0
g_{2}							1	\ldots	0
h_{2}							1	\ldots	0
\vdots								\ddots	
g_{m}									1
h_{m}									1
t	1	1	1	\ldots	1	3	3	\ldots	3

Example

$$
\begin{gathered}
\left(x_{1} \vee \bar{x}_{2} \vee x_{3}\right) \wedge\left(x_{2} \vee x_{3} \vee x_{4}\right) \wedge\left(\bar{x}_{1} \vee \bar{x}_{3} \vee x_{4}\right) \\
\\
\\
\hline y_{1} \\
x_{1}
\end{gathered} x_{2} \quad x_{3}
$$

SubsetSum \in NP-COMPLETE

2. Size of the created instance:

- $|A|=2 n+2 m$
- each created integer has at most $n+m$ digits (including t) \rightarrow integers in the interval $\left[0,10^{n+m}\right]$
\rightarrow binary representation: at most $\log _{2} 10^{n+m}=O(n+m)$ bits

SubsetSum \in NP-COMPLETE

2. Size of the created instance:

- $|A|=2 n+2 m$
- each created integer has at most $n+m$ digits (including t) \rightarrow integers in the interval $\left[0,10^{n+m}\right]$
\rightarrow binary representation: at most $\log _{2} 10^{n+m}=O(n+m)$ bits

3. \mathcal{F} is satisfiable iff there is a set $B \subseteq A$ with $\sum_{a_{i} \in B} a_{i}=t$ (\Rightarrow)

- assume that \mathcal{F} is satisfiable

SubsetSum \in NP-COMPLETE

2. Size of the created instance:

- $|A|=2 n+2 m$
- each created integer has at most $n+m$ digits (including t)
\rightarrow integers in the interval $\left[0,10^{n+m}\right]$
\rightarrow binary representation: at most $\log _{2} 10^{n+m}=O(n+m)$ bits

3. \mathcal{F} is satisfiable iff there is a set $B \subseteq A$ with $\sum_{a_{i} \in B} a_{i}=t$ (\Rightarrow)

- assume that \mathcal{F} is satisfiable
- for each x_{i} :
- if $x_{i}=$ TRUE, then add y_{i} to B
- if $x_{i}=$ FALSE, then add z_{i} to B
- for each c_{j} :
- if 1 literal is TRUE, then add both g_{j} and h_{j} in B
- if 2 literal are TRUE, then add g_{j} in B

SUBSETSUM \in NP-COMPLETE

2. Size of the created instance:

- $|A|=2 n+2 m$
- each created integer has at most $n+m$ digits (including t)
\rightarrow integers in the interval $\left[0,10^{n+m}\right]$
\rightarrow binary representation: at most $\log _{2} 10^{n+m}=O(n+m)$ bits

3. \mathcal{F} is satisfiable iff there is a set $B \subseteq A$ with $\sum_{a_{i} \in B} a_{i}=t$ (\Rightarrow)

- assume that \mathcal{F} is satisfiable
- for each x_{i} :
- if $x_{i}=$ TRUE, then add y_{i} to B
- if $x_{i}=$ FALSE, then add z_{i} to B
- for each c_{j} :
- if 1 literal is TRUE, then add both g_{j} and h_{j} in B
- if 2 literal are TRUE, then add g_{j} in B
- B is a SubsetSum
- left part of t : we select only one of y_{i} and z_{i}, for each $1 \leq i \leq n$
- right part of t : we select g_{j} and h_{j} in order to have exactly 3 ones per clause

SubsetSum \in NP-COMPLETE

3. \mathcal{F} is satisfiable iff there is a set $B \subseteq A$ with $\sum_{a_{i} \in B} a_{i}=t$ (\Leftarrow)

- assume there is a set B such that $\sum_{a_{i} \in B} a_{i}=t$
- each column contains at most 5 ones \rightarrow there is not a "carry"

SubsetSum \in NP-COMPLETE

3. \mathcal{F} is satisfiable iff there is a set $B \subseteq A$ with $\sum_{a_{i} \in B} a_{i}=t$ (\Leftarrow)

- assume there is a set B such that $\sum_{a_{i} \in B} a_{i}=t$
- each column contains at most 5 ones \rightarrow there is not a "carry"
- there is no other way to have 1 in the variable part of t except from selecting exactly one of each y_{i} and z_{i}

SubsetSum \in NP-COMPLETE

3. \mathcal{F} is satisfiable iff there is a set $B \subseteq A$ with $\sum_{a_{i} \in B} a_{i}=t$ (\Leftarrow)

- assume there is a set B such that $\sum_{a_{i} \in B} a_{i}=t$
- each column contains at most 5 ones \rightarrow there is not a "carry"
- there is no other way to have 1 in the variable part of t except from selecting exactly one of each y_{i} and z_{i}
- then, set:
$-x_{i}=$ TRUE, if $y_{i} \in B$
$-x_{i}=$ FALSE, if $z_{i} \in B$

SubsetSum \in NP-COMPLETE

3. \mathcal{F} is satisfiable iff there is a set $B \subseteq A$ with $\sum_{a_{i} \in B} a_{i}=t$ (\Leftarrow)

- assume there is a set B such that $\sum_{a_{i} \in B} a_{i}=t$
- each column contains at most 5 ones \rightarrow there is not a "carry"
- there is no other way to have 1 in the variable part of t except from selecting exactly one of each y_{i} and z_{i}
- then, set:
$-x_{i}=$ TRUE, if $y_{i} \in B$
$-x_{i}=$ FALSE, if $z_{i} \in B$
- there is no way to have 3 in the clause part of t by selecting only g_{j} and h_{j}

SubsetSum \in NP-COMPLETE

3. \mathcal{F} is satisfiable iff there is a set $B \subseteq A$ with $\sum_{a_{i} \in B} a_{i}=t$ (\Leftarrow)

- assume there is a set B such that $\sum_{a_{i} \in B} a_{i}=t$
- each column contains at most 5 ones \rightarrow there is not a "carry"
- there is no other way to have 1 in the variable part of t except from selecting exactly one of each y_{i} and z_{i}
- then, set:
$-x_{i}=$ TRUE, if $y_{i} \in B$
$-x_{i}=$ FALSE, if $z_{i} \in B$
- there is no way to have 3 in the clause part of t by selecting only g_{j} and h_{j}
- thus, at least one literal $\left(y_{i}, z_{i}\right)$ should be one for each clause column
- therefore, this assignment satisfies \mathcal{F}

An algorithm for SubsetSum

- dynamic programming

An algorithm for SubSETSum

- dynamic programming
- consider the integers sorted in non-decreasing order:
$a_{1} \leq a_{2} \leq \ldots \leq a_{n}$
- $S[i, q]= \begin{cases}\text { True, } & \text { if there is a SubSetSum among the } \\ \text { integers which sums up exactly to } q \\ \text { False, } & \text { otherwise }\end{cases}$

An algorithm for SubSETSum

- dynamic programming
- consider the integers sorted in non-decreasing order:

$$
a_{1} \leq a_{2} \leq \ldots \leq a_{n}
$$

- $S[i, q]= \begin{cases}\text { True, } & \text { if there is a SubSETSUM among the } i \text { first } \\ \text { integers which sums up exactly to } q\end{cases}$

Algorithm
1: Initialization:

- $S[i, 0]=$ True, for any $i \geq 1$
$-S[1, q]= \begin{cases}\text { True, } & \text { if } q=a_{1} \\ \text { False, } & \text { otherwise }\end{cases}$

An algorithm for SubsetSum

- dynamic programming
- consider the integers sorted in non-decreasing order:

$$
a_{1} \leq a_{2} \leq \ldots \leq a_{n}
$$

- $S[i, q]= \begin{cases}\text { True, } & \text { if there is a SUBSETSUM among the } i \text { first } \\ \text { integers which sums up exactly to } q\end{cases}$

Algorithm
1: Initialization:

- $S[i, 0]=$ True, for any $i \geq 1$
$-S[1, q]= \begin{cases}\text { True, } & \text { if } q=a_{1} \\ \text { False, } & \text { otherwise }\end{cases}$
2: for $i=1$ to n do
3: \quad for $q=1$ to t do
4: $\quad S[i, q]=S[i-1, q]$ or $S\left[i-1, q-a_{i}\right]$

An algorithm for SubSETSum

- Example: $A=\{2,3,4,6,8\}$ and $t=11$

An algorithm for SubSETSum

- Example: $A=\{2,3,4,6,8\}$ and $t=11$

	0	1	2	3	4		6	7	8	9	10	11
1	T											
2	T											
$i 3$	T											
4	T											
5	T											

$S[i, 0]=$ True, for any $i \geq 1$

An algorithm for SubSETSum

- Example: $A=\{2,3,4,6,8\}$ and $t=11$

An algorithm for SubSETSum

- Example: $A=\{2,3,4,6,8\}$ and $t=11$

	0	1	2	3	4	5	q 6	7	8	9	10	11
1	T	F	T	F	F	F	F	F	F	F	F	F
2	T	F	T									
$i 3$	T											
4	T											
5	T											

$$
\begin{aligned}
& S[i, q]=S[i-1, q] \text { or } S\left[i-1, q-a_{i}\right] \\
& S[2,2]=S[1,2] \text { or } S[1,-1]
\end{aligned}
$$

An algorithm for SubSETSum

- Example: $A=\{2,3,4,6,8\}$ and $t=11$

	0	1	2	3	4	5	6	7	8	9	10	11
1	T	F	T	F	F	F	F	F	F	F	F	F
2	T	F	T	T								
$i 3$	T											
4	T											
5	T											

$$
\begin{aligned}
& S[i, q]=S[i-1, q] \text { or } S\left[i-1, q-a_{i}\right] \\
& S[2,3]=S[1,3] \text { or } S[1,0]
\end{aligned}
$$

An algorithm for SubSETSum

- Example: $A=\{2,3,4,6,8\}$ and $t=11$

	0	1	2	3	4	5	6	7	8	9	10	11
1	T	F	T	F	F	F	F	F	F	F	F	F
2	T	F	T	T	F	T						
$i 3$	T											
4	T											
5	T											

$$
\begin{aligned}
& S[i, q]=S[i-1, q] \text { or } S\left[i-1, q-a_{i}\right] \\
& S[2,5]=S[1,5] \text { or } S[1,2]
\end{aligned}
$$

An algorithm for SubSETSum

- Example: $A=\{2,3,4,6,8\}$ and $t=11$

	0	1	2	3	4	5	q 6	7	8	9	10	11
1	T	F	T	F	F	F	F	F	F	F	F	F
2	T	F	T	T	F	T	F	F	F	F	F	F
$i 3$	T											
4	T											
5	T											

An algorithm for SubSETSum

- Example: $A=\{2,3,4,6,8\}$ and $t=11$

	0	1	2	3	4	5	6	7	8	9	10	11
1	T	F	T	F	F	F	F	F	F	F	F	F
2	T	F	T	T	F	T	F	F	F	F	F	F
3	T	F	T	T	T							
4	T											
5	T											
$S[i, q]=S[i-1, q]$ or $S\left[i-1, q-a_{i}\right]$$S[3,4]=S[2,4]$ or $S[2,0]$												

An algorithm for SubSETSum

- Example: $A=\{2,3,4,6,8\}$ and $t=11$

		0	1	2	3	4	5	6	7	8	9	10	11
	1	T	F	T	F	F	F	F	F	F	F	F	F
	2	T	F	T	T	F	T	F	F	F	F	F	F
i	3	T	F	T	T	T	T	T					
	4	T											
	5	T											
$\begin{aligned} & S[i, q]=S[i-1, q] \text { or } S\left[i-1, q-a_{i}\right] \\ & S[3,6]=S[2,6] \text { or } S[2,2] \end{aligned}$													

An algorithm for SubSETSum

- Example: $A=\{2,3,4,6,8\}$ and $t=11$

		0	1	2	3	4	5	6	7	8	9	10	11
	1	T	F	T	F	F	F	F	F	F	F	F	F
	2	T	F	T	T	F	T	F	F	F	F	F	F
i	3	T	F	T	T	T	T	T	T	F	T	F	F
	4	T											
	5	T											

An algorithm for SubSETSum

- Example: $A=\{2,3,4,6,8\}$ and $t=11$

	q												
		0	1	2	3	4	5	6	7	8	9	10	11
	1	T	F	T	F	F	F	F	F	F	F	F	F
	2	T	F	T	T	F	T	F	F	F	F	F	F
i	3	T	F	T	T	T	T	T	T	F	T	F	F
	4	T	F	T	T	T	T	T	T	T	T	T	T
	5	T											

$$
S[i, q]=S[i-1, q] \text { or } S\left[i-1, q-a_{i}\right]
$$

An algorithm for SubSETSum

- Example: $A=\{2,3,4,6,8\}$ and $t=11$

	q												
		0	1	2	3	4	5	6	7	8	9	10	11
	1	T	F	T	F	F	F	F	F	F	F	F	F
	2	T	F	T	T	F	T	F	F	F	F	F	F
i	3	T	F	T	T	T	T	T	T	F	T	F	F
	4	T	F	T	T	T	T	T	T	T	T	T	T
	5	T	F	T	T	T	T	T	T	T	T	T	T

- there is a TRUE in column $q=11$, hence $\langle A, t\rangle \in \operatorname{SubSETSum}$

An algorithm for SubSETSum

- Example: $A=\{2,3,4,6,8\}$ and $t=11$

	q												
		0	1	2	3	4	5	6	7	8	9	10	11
	1	T	F	T	F	F	F	F	F	F	F	F	F
	2	T	F	T	T	F	T	F	F	F	F	F	F
i	3	T	F	T	T	T	T	T	T	F	T	F	F
	4	T	F	T	T	T	T	T	T	T	T	T	T
	5	T	F	T	T	T	T	T	T	T	T	T	T

- how to construct the set B ?

An algorithm for SubSETSum

- Example: $A=\{2,3,4,6,8\}$ and $t=11$

	q												
		0	1	2	3	4	5	6	7	8	9	10	11
	1	T	F	T	F	F	F	F	F	F	F	F	F
	2	T	F	T	T	F	T	F	F	F	F	F	F
i	3	T	F	T	T	T	T	T	T	F	T	F	F
	4	T	F	T	T	T	T	T	T	T	T	T	T
	5	T	F	T	T	T	T	T	T	T	T	T	T

- how to construct the set B ?
- $S[5,11]=S[4,11]$ or $S[4,3]$
- $S[4,11]: a_{5} \notin B$
- $S[4,3]: a_{5} \in B$

An algorithm for SubSETSum

- Example: $A=\{2,3,4,6,8\}$ and $t=11$

		0	1	2	3	4	5	6	7	8	9	10	11
i	1	T	F	T	F	F	F	F	F	F	F	F	F
	2	T	F	T	T	F	T	F	F	F	F	F	F
	3	T	F	T	T	T	T	T	T	F	T	F	F
	4	T	F	T	T	T	T	T	T	T	T	T	T
	5	T	F	T	T	T	T	T	T	T	T	T	T

- how to construct the set B ?
- $S[5,11]=S[4,11]$ or $S[4,3]$
- $S[4,11]: a_{5} \notin B$
- $S[4,3]: a_{5} \in B$
- $S[4,3]=S[3,3]$ or $S[3,-3]$, so $a_{4} \notin B$

An algorithm for SubSETSum

- Example: $A=\{2,3,4,6,8\}$ and $t=11$

	q												
		0	1	2	3	4	5	6	7	8	9	10	11
	1	T	F	T	F	F	F	F	F	F	F	F	F
	2	T	F	T	T	F	T	F	F	F	F	F	F
i	3	T	F	T	T	T	T	T	T	F	T	F	F
	4	T	F	T	T	T	T	T	T	T	T	T	T
	5	T	F	T	T	T	T	T	T	T	T	T	T

- how to construct the set B ?
- $S[5,11]=S[4,11]$ or $S[4,3]$
- $S[4,11]: a_{5} \notin B$
- $S[4,3]: a_{5} \in B$
- $S[4,3]=S[3,3]$ or $S[3,-3]$, so $a_{4} \notin B$
- $S[3,3]=S[2,3]$ or $S[2,-1]$, so $a_{3} \notin B$

An algorithm for SubSETSum

- Example: $A=\{2,3,4,6,8\}$ and $t=11$

	q												
		0	1	2	3	4	5	6	7	8	9	10	11
	1	T	F	T	F	F	F	F	F	F	F	F	F
	2	T	F	T	T	F	T	F	F	F	F	F	F
i	3	T	F	T	T	T	T	T	T	F	T	F	F
	4	T	F	T	T	T	T	T	T	T	T	T	T
	5	T	F	T	T	T	T	T	T	T	T	T	T

- how to construct the set B ?
- $S[5,11]=S[4,11]$ or $S[4,3]$
- $S[4,11]: a_{5} \notin B$
- $S[4,3]: a_{5} \in B$
- $S[4,3]=S[3,3]$ or $S[3,-3]$, so $a_{4} \notin B$
- $S[3,3]=S[2,3]$ or $S[2,-1]$, so $a_{3} \notin B$
- $S[2,3]=S[1,3]$ or $S[1,0]$, so $a_{2} \in B, a_{1} \notin B$

An algorithm for SubSETSum

- Example: $A=\{2,3,4,6,8\}$ and $t=11$

	q												
		0	1	2	3	4	5	6	7	8	9	10	11
	1	T	F	T	F	F	F	F	F	F	F	F	F
	2	T	F	T	T	F	T	F	F	F	F	F	F
i	3	T	F	T	T	T	T	T	T	F	T	F	F
	4	T	F	T	T	T	T	T	T	T	T	T	T
	5	T	F	T	T	T	T	T	T	T	T	T	T

- Complexity?

An algorithm for SubSETSum

- Example: $A=\{2,3,4,6,8\}$ and $t=11$

	q												
		0	1	2	3	4	5	6	7	8	9	10	11
	1	T	F	T	F	F	F	F	F	F	F	F	F
	2	T	F	T	T	F	T	F	F	F	F	F	F
i	3	T	F	T	T	T	T	T	T	F	T	F	F
	4	T	F	T	T	T	T	T	T	T	T	T	T
	5	T	F	T	T	T	T	T	T	T	T	T	T

- Complexity?
- $O(n \cdot t)$

An algorithm for SubSETSum

- Example: $A=\{2,3,4,6,8\}$ and $t=11$

	q												
		0	1	2	3	4	5	6	7	8	9	10	11
	1	T	F	T	F	F	F	F	F	F	F	F	F
	2	T	F	T	T	F	T	F	F	F	F	F	F
i	3	T	F	T	T	T	T	T	T	F	T	F	F
	4	T	F	T	T	T	T	T	T	T	T	T	T
	5	T	F	T	T	T	T	T	T	T	T	T	T

- Complexity?
- $O(n \cdot t)$
- Is this polynomial?
- if yes, then $\mathrm{P}=\mathrm{NP}$!!!

An algorithm for SubsetSum

- input: $I=\langle A, t\rangle$
- size of the input:

$$
|I|=\log _{2} t+\sum_{a_{i} \in A} \log _{2} a_{i}
$$

An algorithm for SubsetSum

- input: $I=\langle A, t\rangle$
- size of the input:

$$
|I|=\log _{2} t+\sum_{a_{i} \in A} \log _{2} a_{i}=O\left(\log _{2} t\right)
$$

An algorithm for SubSETSum

- input: $I=\langle A, t\rangle$
- size of the input:

$$
|I|=\log _{2} t+\sum_{a_{i} \in A} \log _{2} a_{i}=O\left(\log _{2} t\right)
$$

- complexity of the algorithm:

$$
O(n \cdot t)=O\left(n \cdot 2^{|I|}\right)
$$

An algorithm for SubSETSum

- input: $I=\langle A, t\rangle$
- size of the input:

$$
|I|=\log _{2} t+\sum_{a_{i} \in A} \log _{2} a_{i}=O\left(\log _{2} t\right)
$$

- complexity of the algorithm:

$$
O(n \cdot t)=O\left(n \cdot 2^{|I|}\right)
$$

- that is, exponential to the size of the input!

Pseudopolynomial algorithms

- $|I|_{1}$: the encoding of the input in unary

Pseudopolynomial algorithms

- $|I|_{1}$: the encoding of the input in unary
- example: SubsetSum

$$
|I|_{1}=t+\sum_{a_{i} \in A} a_{i}
$$

Pseudopolynomial algorithms

- $|I|_{1}$: the encoding of the input in unary
- example: SubsetSum

$$
|I|_{1}=t+\sum_{a_{i} \in A} a_{i}
$$

then the complexity of the algorithm is polynomial:

$$
O(n \cdot t)=O\left(n \cdot|I|_{1}\right)
$$

Pseudopolynomial algorithms

- $|I|_{1}$: the encoding of the input in unary
- example: SubsetSum

$$
|I|_{1}=t+\sum_{a_{i} \in A} a_{i}
$$

then the complexity of the algorithm is polynomial:

$$
O(n \cdot t)=O\left(n \cdot|I|_{1}\right)
$$

- Definition: we call an algorithm pseudopolynomial if its complexity is polynomial to the size of the input, when this is encoded in unary.

Pseudopolynomial algorithms

- $|I|_{1}$: the encoding of the input in unary
- example: SubsetSum

$$
|I|_{1}=t+\sum_{a_{i} \in A} a_{i}
$$

then the complexity of the algorithm is polynomial:

$$
O(n \cdot t)=O\left(n \cdot|I|_{1}\right)
$$

- Definition: we call an algorithm pseudopolynomial if its complexity is polynomial to the size of the input, when this is encoded in unary.
- Definition: NP-complete problems that admit a pseudopolynomial algorithm are called weakly NP-COMPLETE.

Pseudopolynomial algorithms

- $|I|_{1}$: the encoding of the input in unary
- example: SubsetSum

$$
|I|_{1}=t+\sum_{a_{i} \in A} a_{i}
$$

then the complexity of the algorithm is polynomial:

$$
O(n \cdot t)=O\left(n \cdot|I|_{1}\right)
$$

- Definition: we call an algorithm pseudopolynomial if its complexity is polynomial to the size of the input, when this is encoded in unary.
- Definition: NP-complete problems that admit a pseudopolynomial algorithm are called weakly NP-COMPLETE.
- Definition: we call a problem strong or unary NP-COMPLETE if it remains NP-COMPLETE even when the input is encoded in unary.

Observations

- where is the problem with the reduction of SubsetSum if the input is encoded in unary?

Observations

- where is the problem with the reduction of SubsetSum if the input is encoded in unary?
- each created integer has at most $n+m$ digits (including t)
\rightarrow integers in the interval $\left[0,10^{n+m}\right]$
\rightarrow unary representation: 10^{n+m} symbols per integer
- the size of the created input is not polynomial with respect to the size of the initial input

Observations

- where is the problem with the reduction of SubsetSum if the input is encoded in unary?
- each created integer has at most $n+m$ digits (including t)
\rightarrow integers in the interval $\left[0,10^{n+m}\right]$
\rightarrow unary representation: 10^{n+m} symbols per integer
- the size of the created input is not polynomial with respect to the size of the initial input
- are there numerical problems that are strong NP-COMPLETE?

Observations

- where is the problem with the reduction of SubsetSum if the input is encoded in unary?
- each created integer has at most $n+m$ digits (including t)
\rightarrow integers in the interval $\left[0,10^{n+m}\right]$
\rightarrow unary representation: 10^{n+m} symbols per integer
- the size of the created input is not polynomial with respect to the size of the initial input
- are there numerical problems that are strong NP-COMPLETE?
- YES
- 3-Partition, Bin-Packing, ...

Observations

- where is the problem with the reduction of SUBSETSUM if the input is encoded in unary?
- each created integer has at most $n+m$ digits (including t)
\rightarrow integers in the interval $\left[0,10^{n+m}\right]$
\rightarrow unary representation: 10^{n+m} symbols per integer
- the size of the created input is not polynomial with respect to the size of the initial input
- are there numerical problems that are strong NP-COMPLETE?
- YES
- 3-Partition, Bin-Packing, ...
- Attention! if $A \leq_{\mathrm{P}} B$ and A is weakly NP-COMPLETE, then we only prove that B is weakly NP-COMPLETE

The 3 -Dimensional Matching problem

3-DM

Input: three sets A, B, C of vertices of the same cardinality $|A|=|B|=|C|=n$, a set $M \subseteq A \times B \times C$ of hyper-edges (triangles)
Question: is there a set $M^{\prime} \subseteq M$ such that $\left|M^{\prime}\right|=n$ and all vertices appear exactly once in M^{\prime} ?

The 3 -Dimensional Matching problem

3-DM

Input: three sets A, B, C of vertices of the same cardinality $|A|=|B|=|C|=n$, a set $M \subseteq A \times B \times C$ of hyper-edges (triangles)
Question: is there a set $M^{\prime} \subseteq M$ such that $\left|M^{\prime}\right|=n$ and all vertices appear exactly once in M^{\prime} ?

- 3-DM is NP-complete in the strong sense

The 3-Partition problem

3-Partition

Input: a set of positive integers $S=\left\{s_{1}, s_{2}, \ldots, s_{3 n}\right\}$, where $\sum_{s_{i} \in S}=n \cdot t$ and $\frac{t}{4} \leq s_{i} \leq \frac{t}{2}$ for each $s_{i} \in A$
Question: can S be partitioned into n disjoint sets $S_{1}, S_{2}, \ldots, S_{n}$ such that $\sum_{s_{i} \in S_{j}} s_{i}=t$, for $1 \leq j \leq n$?

- observation: each S_{j} should have exactly 3 integers

- 3-Partition is NP-complete in the strong sense

Another problem

Bin-Packing

Input: a set of items A, a size $s(a)$ for each $a \in A$, a positive integer capacity C, and a positive integer k
Question: is there a partition of A into disjoint sets $A_{1}, A_{2}, \ldots, A_{k}$ such that the total size of the elements in each set A_{j} does not exceed the capacity C, i.e., $\sum_{a \in A_{j}} s(a) \leq C$?

Show that this problem is NP-complete Is it strongly or weakly NP-COMPLETE?
(try to give the strongest result)

