Fundamental Computer Science

Denis Trystram (inspired by Giorgio Lucarelli)

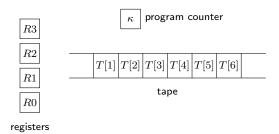
February, 2020

Random Access Turing Machines

- Random Access Memory
 - access any position of the tape in a single step

Random Access Turing Machines

- ► Random Access Memory
 - access any position of the tape in a single step
- ▶ we also need:
 - \blacktriangleright finite number of *registers* \rightarrow manipulate addresses of the tape
 - program counter \rightarrow current instruction to execute



program: a set of instructions

Random Access Turing Machines: Instructions set

instruction	operand	semantics
read	j	$R_0 \leftarrow T[R_j]$
write	j	$T[R_j] \leftarrow R_0$
store	j	$R_j \leftarrow R_0$
load	j	$R_0 \leftarrow R_j$
load	= c	$R_0 = c$
add	j	$R_0 \leftarrow R_0 + R_j$
add	= c	$R_0 \leftarrow R_0 + c$
sub	j	$R_0 \leftarrow \max\{R_0 + R_j, 0\}$
sub	= c	$R_0 \leftarrow \max\{R_0 + c, 0\}$
half		$R_0 \leftarrow \lfloor \frac{R_0}{2} \rfloor$
jump	s	$\kappa \leftarrow s$
jpos	s	if $R_0 > 0$ then $\kappa \leftarrow s$
jzero	s	if $R_0 = 0$ then $\kappa \leftarrow s$
halt		$\kappa = 0$

• register R_0 : accumulator

Random Access Turing Machines: Formal definition

A Random Access Turing Machine is a pair $M = (k, \Pi)$, where

- $\blacktriangleright \ k>0$ is the finite number of registers, and
- $\Pi = (\pi_1, \pi_2, \dots, \pi_p)$ is a finite sequence of instructions (program).

Random Access Turing Machines: Formal definition

A Random Access Turing Machine is a pair $M=(k,\Pi),$ where

- $\blacktriangleright \ k>0$ is the finite number of registers, and
- $\Pi = (\pi_1, \pi_2, \dots, \pi_p)$ is a finite sequence of instructions (program).

Notations

- the last instruction π_p is always a *halt* instruction
- $(\kappa; R_0, R_1, \ldots, R_{k-1}; T)$: a configuration, where
 - κ: program counter
 - R_j , $0 \le j < k$: the current value of register j
 - T: the contents of the tape (each T[j] contains a non-negative integer, i.e. T[j] ∈ N)
- halted configuration: $\kappa = 0$

 Write a program for a Random Access Turing Machine that multiplies two integers.

Tip: assume that the initial configuration is $(1; 0, a_1, a_2, 0; \emptyset)$

- Write a program for a Random Access Turing Machine that multiplies two integers.
 Tip: assume that the initial configuration is (1; 0, a₁, a₂, 0; Ø)
- 1: while $R_1 > 0$ do
- 2: $R_1 \leftarrow R_1 1$
- 3: $R_3 \leftarrow R_3 + R_2$

- Write a program for a Random Access Turing Machine that multiplies two integers.
 Tip: assume that the initial configuration is (1; 0, a₁, a₂, 0; Ø)
- 1: while $R_1 > 0$ do
- 2: $R_1 \leftarrow R_1 1$
- 3: $R_3 \leftarrow R_3 + R_2$

or (all computations should pass through R_0)

 $\begin{array}{ll} 1: \ R_0 \leftarrow R_1 \\ 2: \ \textbf{while} \ R_0 > 0 \ \textbf{do} \\ 3: \ \ R_0 \leftarrow R_0 - 1 \\ 4: \ \ R_1 \leftarrow R_0 \\ 5: \ \ R_0 \leftarrow R_3 \\ 6: \ \ R_0 \leftarrow R_0 + R_2 \\ 7: \ \ R_3 \leftarrow R_3 \end{array}$

- Write a program for a Random Access Turing Machine that multiplies two integers.
 Tip: assume that the initial configuration is (1; 0, a₁, a₂, 0; Ø)
- 1: while $R_1 > 0$ do
- 2: $R_1 \leftarrow R_1 1$
- 3: $R_3 \leftarrow R_3 + R_2$

or (all computations should pass through R_0)

1: $R_0 \leftarrow R_1$ 2: while $R_0 > 0$ do 3: $R_0 \leftarrow R_0 - 1$ 4: $R_1 \leftarrow R_0$ 5: $R_0 \leftarrow R_3$ 6: $R_0 \leftarrow R_0 + R_2$ 7: $R_3 \leftarrow R_3$

- 1: load 1
- 2: jzero 9
- 3: sub =1
- 4: store 1
- 5: load 3
- 6: add 2
- 7: store 3
- 8: jump 1
- 9: halt