Fundamental Computer Science

Denis Trystram
(inspired by Giorgio Lucarelli)

February, 2020

Random Access Turing Machines

- Random Access Memory
- access any position of the tape in a single step

Random Access Turing Machines

- Random Access Memory
- access any position of the tape in a single step
- we also need:
- finite number of registers \rightarrow manipulate addresses of the tape
- program counter \rightarrow current instruction to execute

- program: a set of instructions

Random Access Turing Machines: Instructions set

instruction	operand	semantics
read	j	$R_{0} \leftarrow T\left[R_{j}\right]$
write	j	$T\left[R_{j}\right] \leftarrow R_{0}$
store	j	$R_{j} \leftarrow R_{0}$
load	j	$R_{0} \leftarrow R_{j}$
load	$=c$	$R_{0}=c$
add	j	$R_{0} \leftarrow R_{0}+R_{j}$
add	$=c$	$R_{0} \leftarrow R_{0}+c$
sub	j	$R_{0} \leftarrow \max \left\{R_{0}+R_{j}, 0\right\}$
sub		$R_{0} \leftarrow \max \left\{R_{0}+c, 0\right\}$
half	s	$R_{0} \leftarrow\left\lfloor\frac{R_{0}}{2}\right\rfloor$
jump	s	$\kappa \leftarrow s$
jpos	s	if $R_{0}>0$ then $\kappa \leftarrow s$
jzero		if $R_{0}=0$ then $\kappa \leftarrow s$
halt		$\kappa=0$

- register R_{0} : accumulator

Random Access Turing Machines: Formal definition

A Random Access Turing Machine is a pair $M=(k, \Pi)$, where

- $k>0$ is the finite number of registers, and
- $\Pi=\left(\pi_{1}, \pi_{2}, \ldots, \pi_{p}\right)$ is a finite sequence of instructions (program).

Random Access Turing Machines: Formal definition

A Random Access Turing Machine is a pair $M=(k, \Pi)$, where

- $k>0$ is the finite number of registers, and
- $\Pi=\left(\pi_{1}, \pi_{2}, \ldots, \pi_{p}\right)$ is a finite sequence of instructions (program).

Notations

- the last instruction π_{p} is always a halt instruction
- $\left(\kappa ; R_{0}, R_{1}, \ldots, R_{k-1} ; T\right)$: a configuration, where
- κ : program counter
- $R_{j}, 0 \leq j<k$: the current value of register j
- T : the contents of the tape
(each $T[j]$ contains a non-negative integer, i.e. $T[j] \in \mathbb{N}$)
- halted configuration: $\kappa=0$

Exercise

- Write a program for a Random Access Turing Machine that multiplies two integers.
Tip: assume that the initial configuration is $\left(1 ; 0, a_{1}, a_{2}, 0 ; \emptyset\right)$

Exercise

- Write a program for a Random Access Turing Machine that multiplies two integers.
Tip: assume that the initial configuration is $\left(1 ; 0, a_{1}, a_{2}, 0 ; \emptyset\right)$

1: while $R_{1}>0$ do
2: $\quad R_{1} \leftarrow R_{1}-1$
3: $\quad R_{3} \leftarrow R_{3}+R_{2}$

Exercise

- Write a program for a Random Access Turing Machine that multiplies two integers.
Tip: assume that the initial configuration is $\left(1 ; 0, a_{1}, a_{2}, 0 ; \emptyset\right)$

1: while $R_{1}>0$ do
2: $\quad R_{1} \leftarrow R_{1}-1$
3: $\quad R_{3} \leftarrow R_{3}+R_{2}$
or (all computations should pass through R_{0})
1: $R_{0} \leftarrow R_{1}$
2: while $R_{0}>0$ do
3: $\quad R_{0} \leftarrow R_{0}-1$
4: $\quad R_{1} \leftarrow R_{0}$
5: $\quad R_{0} \leftarrow R_{3}$
6: $\quad R_{0} \leftarrow R_{0}+R_{2}$
7: $\quad R_{3} \leftarrow R_{3}$

Exercise

- Write a program for a Random Access Turing Machine that multiplies two integers.
Tip: assume that the initial configuration is $\left(1 ; 0, a_{1}, a_{2}, 0 ; \emptyset\right)$

1: while $R_{1}>0$ do
2: $\quad R_{1} \leftarrow R_{1}-1$
3: $\quad R_{3} \leftarrow R_{3}+R_{2}$
or (all computations should pass through R_{0})
1: $R_{0} \leftarrow R_{1}$
2: while $R_{0}>0$ do
3: $\quad R_{0} \leftarrow R_{0}-1$
4: $\quad R_{1} \leftarrow R_{0}$
5: $\quad R_{0} \leftarrow R_{3}$
6: $\quad R_{0} \leftarrow R_{0}+R_{2}$
7: $\quad R_{3} \leftarrow R_{3}$

1: load 1
2: jzero 9
3: sub $=1$
4: store 1
5: load 3
6: add 2
7: store 3
8: jump 1
9: halt

