
Fundamental Computer Science

Denis Trystram
(inspired by Giorgio Lucarelli)

February, 2020



Random Access Turing Machines

I Random Access Memory
I access any position of the tape in a single step

I we also need:
I finite number of registers → manipulate addresses of the tape
I program counter → current instruction to execute

T [1] T [2] T [3] T [4] T [5] T [6]

tape
R0

R1

R2

R3

registers

κ program counter

I program: a set of instructions



Random Access Turing Machines

I Random Access Memory
I access any position of the tape in a single step

I we also need:
I finite number of registers → manipulate addresses of the tape
I program counter → current instruction to execute

T [1] T [2] T [3] T [4] T [5] T [6]

tape
R0

R1

R2

R3

registers

κ program counter

I program: a set of instructions



Random Access Turing Machines: Instructions set

instruction operand semantics
read j R0 ← T [Rj ]
write j T [Rj ]← R0

store j Rj ← R0

load j R0 ← Rj

load = c R0 = c
add j R0 ← R0 +Rj

add = c R0 ← R0 + c
sub j R0 ← max{R0 +Rj , 0}
sub = c R0 ← max{R0 + c, 0}
half R0 ← bR0

2 c
jump s κ← s
jpos s if R0 > 0 then κ← s
jzero s if R0 = 0 then κ← s
halt κ = 0

I register R0: accumulator



Random Access Turing Machines: Formal definition

A Random Access Turing Machine is a pair M = (k,Π), where

I k > 0 is the finite number of registers, and

I Π = (π1, π2, . . . , πp) is a finite sequence of instructions (program).

Notations

I the last instruction πp is always a halt instruction

I (κ;R0, R1, . . . , Rk−1;T ): a configuration, where
I κ: program counter
I Rj , 0 ≤ j < k: the current value of register j
I T : the contents of the tape

(each T [j] contains a non-negative integer, i.e. T [j] ∈ N)

I halted configuration: κ = 0



Random Access Turing Machines: Formal definition

A Random Access Turing Machine is a pair M = (k,Π), where

I k > 0 is the finite number of registers, and

I Π = (π1, π2, . . . , πp) is a finite sequence of instructions (program).

Notations

I the last instruction πp is always a halt instruction

I (κ;R0, R1, . . . , Rk−1;T ): a configuration, where
I κ: program counter
I Rj , 0 ≤ j < k: the current value of register j
I T : the contents of the tape

(each T [j] contains a non-negative integer, i.e. T [j] ∈ N)

I halted configuration: κ = 0



Exercise

I Write a program for a Random Access Turing Machine that
multiplies two integers.
Tip: assume that the initial configuration is (1; 0, a1, a2, 0; ∅)

1: while R1 > 0 do
2: R1 ← R1 − 1
3: R3 ← R3 +R2

or (all computations should pass through R0)

1: R0 ← R1

2: while R0 > 0 do
3: R0 ← R0 − 1
4: R1 ← R0

5: R0 ← R3

6: R0 ← R0 +R2

7: R3 ← R3

1: load 1
2: jzero 9
3: sub =1
4: store 1
5: load 3
6: add 2
7: store 3
8: jump 1
9: halt



Exercise

I Write a program for a Random Access Turing Machine that
multiplies two integers.
Tip: assume that the initial configuration is (1; 0, a1, a2, 0; ∅)

1: while R1 > 0 do
2: R1 ← R1 − 1
3: R3 ← R3 +R2

or (all computations should pass through R0)

1: R0 ← R1

2: while R0 > 0 do
3: R0 ← R0 − 1
4: R1 ← R0

5: R0 ← R3

6: R0 ← R0 +R2

7: R3 ← R3

1: load 1
2: jzero 9
3: sub =1
4: store 1
5: load 3
6: add 2
7: store 3
8: jump 1
9: halt



Exercise

I Write a program for a Random Access Turing Machine that
multiplies two integers.
Tip: assume that the initial configuration is (1; 0, a1, a2, 0; ∅)

1: while R1 > 0 do
2: R1 ← R1 − 1
3: R3 ← R3 +R2

or (all computations should pass through R0)

1: R0 ← R1

2: while R0 > 0 do
3: R0 ← R0 − 1
4: R1 ← R0

5: R0 ← R3

6: R0 ← R0 +R2

7: R3 ← R3

1: load 1
2: jzero 9
3: sub =1
4: store 1
5: load 3
6: add 2
7: store 3
8: jump 1
9: halt



Exercise

I Write a program for a Random Access Turing Machine that
multiplies two integers.
Tip: assume that the initial configuration is (1; 0, a1, a2, 0; ∅)

1: while R1 > 0 do
2: R1 ← R1 − 1
3: R3 ← R3 +R2

or (all computations should pass through R0)

1: R0 ← R1

2: while R0 > 0 do
3: R0 ← R0 − 1
4: R1 ← R0

5: R0 ← R3

6: R0 ← R0 +R2

7: R3 ← R3

1: load 1
2: jzero 9
3: sub =1
4: store 1
5: load 3
6: add 2
7: store 3
8: jump 1
9: halt


