
Fundamental Computer Science

Malin Rau and Denis Trystram
(inspired by Giorgio Lucarelli)

February, 2020

Last lecture

I Definition of time complexity classes
I P: problems solvable in O(nk) time
I NP: problems verifiable in O(nk) time

I Prove that a problem belongs to NP
I give a polynomial-time verifier
I (give a Non-deterministic Turing Machine)

I Reduction from problem A to problem B (A ≤P B)

1. transform an instance IA of A to an instance IB of B
2. show that the reduction is of polynomial size
3. prove that:

“there is a solution for the problem A on the instance IA
if and only if

there is a solution for the problem B on the instance IB”

Today

I Definition of the class NP-complete

I SAT is NP-complete

I Use reductions to prove NP-completeness

I Variants of SAT

Introduction to the SAT problem

Boolean formulas

I xi: a Boolean variable, values TRUE or FALSE

I x̄i: negation of xi

I xi, x̄i: literals

I ∨: logical OR

I ∧: logical AND

I (x1 ∨ x̄3 ∨ x4): clause, a set of literals in disjunction

I F = (x1 ∨ x2 ∨ x̄3) ∧ (x̄4) ∧ (x1 ∨ x4): a Boolean formula in
Conjunctive Normal Form (CNF), a set of clauses in conjunction
I every formula can be written in CNF (focus on CNF formulas)

I assignment: give TRUE or FALSE value to variables

I a formula is satisfiable if there is an assignment evaluating to TRUE
I i.e, (x1, x2, x3, x4) = (TRUE,TRUE,TRUE,FALSE) for the above

formula F

The satisfiability problem

I X = {x1, x2, . . . , xn}: set of variables

I C = {c1, c2, . . . , cm}: set of clauses

I F = c1 ∧ c2 ∧ . . . ∧ cm

SAT= {〈F〉 | F is a satisfiable Boolean formula }

I kSAT: each clause has at most k literals
(in some definitions exactly k literals)

I example of 2SAT: (x1 ∨ x̄2) ∧ (x2 ∨ x3) ∧ (x2 ∨ x̄3)

2SAT ∈ P

2SAT ∈ P

Preliminaries

I Assume that each clause has exactly two literals

I x⇒ y: implication

x y x⇒ y
FALSE FALSE TRUE
TRUE FALSE FALSE
FALSE TRUE TRUE
TRUE TRUE TRUE

I x⇒ y = x̄ ∨ y
x y x̄ x̄ ∨ y

FALSE FALSE TRUE TRUE
TRUE FALSE FALSE FALSE
FALSE TRUE TRUE TRUE
TRUE TRUE FALSE TRUE

2SAT ∈ P

I Construct a directed graph G
I for each literal x ∈ X ∪ X̄, add a vertex
I for each clause x ∨ y, add the arcs (x̄, y) and (ȳ, x)

corresponds to implications x̄⇒ y and ȳ ⇒ x

F = (x1 ∨ x̄2) ∧ (x̄1 ∨ x̄3) ∧ (x1 ∨ x2) ∧ (x̄3 ∨ x4) ∧ (x̄1 ∨ x4)

x1 x̄1

x2

x̄2

x3 x̄3

x4

x̄4

We want (x̄1 ∨ x4) = TRUE

I arc (x1, x4) means:
– if x1 = T then x4 should be T
– if x4 = F then x1 should be F

I arc (x̄4, x̄1) means:
– if x̄4 = T then x̄1 should be T
– if x̄1 = F then x̄4 should be F

2SAT ∈ P

Lemma

If there is a path from x to y in G, then there is also a path from ȳ to x̄.

Proof:

x . . . a b . . . y

I By construction:
I we add an arc (a, b) if (ā ∨ b) exists in F
I but if (ā ∨ b) exists in F , then we add also the arc (b̄, ā)

I Apply the argument for all arcs in the path from x to y

x̄ . . . ā b̄ . . . ȳ

2SAT ∈ P

Lemma

If there is a variable x such that G has both a path from x to x̄ and a
path from x̄ to x, then F is not satisfiable.

F = (x1 ∨ x̄2)∧ (x2 ∨ x̄3)∧ (x3 ∨ x̄4)∧ (x4 ∨ x̄1)∧ (x̄4 ∨ x̄1)∧ (x2 ∨ x3)

x1 x̄1

x2

x̄2

x3 x̄3

x4

x̄4

If x1 = TRUE, then
x4 should be TRUE, and then
(x̄4 ∨ x̄1) is not satisfiable

If x1 = FALSE, then
x2 should be FALSE, and then
x̄3 should be FALSE, and then
(x2 ∨ x3) is not satisfiable

2SAT ∈ P

Lemma

If there is a variable x such that G has both a path from x to x̄ and a
path from x̄ to x, then F is not satisfiable.

Proof:

I assume that F is satisfiable (for contradiction)

I case 1: x = TRUE

x . . . a b . . . x̄

T T F F

There should be an arc (a, b) with a = T and b = F.
That is, (ā ∨ b) is not satisfiable.
Hence, x cannot be TRUE.

I case 2: x = FALSE
Same arguments give that x cannot be FALSE on path from x̄ to x.

I Then, F is not satisfiable, a contradiction.

2SAT ∈ P

Algorithm

1. while there are non-assigned variables do

2. Select a literal a for which there is not a path from a to ā.

3. Set a = TRUE.

4. Assign TRUE to all reachable literals from a.

5. Eliminate all assigned variables from G.

F = (x1 ∨ x̄2) ∧ (x̄1 ∨ x̄3) ∧ (x1 ∨ x2) ∧ (x̄3 ∨ x4) ∧ (x̄1 ∨ x4)

x1 x̄1

x2

x̄2

x3 x̄3

x4

x̄4

T F

x2

x̄2

F T

T

F

2SAT ∈ P

Lemma (Correctness of the algorithm)

Consider a literal a selected in Line 2 of the algorithm. There is no path
from a to both b and b̄.

Proof:

I Assume there are paths from a to b and from a to b̄.

I Then, there are paths from b̄ to ā and from b to ā (by the first
lemma)

I Thus, there are paths from a to ā (passing through b or b̄)

I a cannot be selected by the algorithm because we only select a if
there is not a path from a to ā, a contradiction.

Exercise

A Horn formula has at most one positive literal per clause.
Prove that Horn-SAT ∈ P, where

Horn-SAT= {〈F〉 | F is a satisfiable Horn formula}

Example:

F = (x1 ∨ x̄2 ∨ x̄5 ∨ x̄3) ∧ (x2 ∨ x̄3 ∨ x̄4) ∧ (x̄1 ∨ x̄5) ∧ (x3 ∨ x̄4) ∧ (x4)

I negative literal x̄i, i ∈ N
I positive literal xi, i ∈ N

Tipp:

I What has to happen to clauses that contain only one single literal?

I Consider the case that each clause contains a negative literal.

Solution

A Horn formula has at most one positive literal per clause.
Prove that Horn-SAT ∈ P, where

Horn-SAT= {〈F〉 | F is a satisfiable Horn formula}

Algorithm:

1. while there are clauses with only one literal

1.1 pic a clause c with only one literal
1.2 set the corresponding variable to TRUE or FALSE such that the

clause is satisfied
1.3 delete all clauses that are satisfied by the assignment and remove the

variable from all the other clauses

2. set all non assigned variables to FALSE

After step 1 all the clauses contain at least one negative literal.
Therefore, after setting all variables to FALSE in step 2 every clause will
contain at least one literal that is TRUE. Hence all the clauses are
satisfied. The algorithm has a time complexity of at most O((mn)2)

NP-completeness

NP-completeness

Definition

A language B is NP-complete if

I B is in NP, and

I every language A in NP is polynomially reducible to B.

Theorem

If B is NP-complete and B ∈ P, then P = NP.

Proof:

I direct from the definition of reducibility

NP-completeness

Definition

A language B is NP-complete if

I B is in NP, and

I every language A in NP is polynomially reducible to B.

Theorem

If B is NP-complete and B ≤P C for C ∈ NP, then C is
NP-complete

Proof:

I initially, C ∈ NP

I we need to show: “every A ∈ NP polynomially reduces to C”
I every language in NP polynomially reduces to B
I B polynomially reduces to C

SAT ∈ NP-complete

Cook-Levin theorem

Theorem

SAT ∈ P if and only if P = NP.

equivalently: SAT is NP-complete.

SAT ∈ NP-complete

SAT is in NP

I given an assignment of variables, scan all clauses to check if they
evaluate to TRUE

A ≤P SAT for every language A ∈ NP

I M : a Non-Deterministic Turing Machine that decides A in nk time

I create a table of size nk × nk
I each row i corresponds to a configuration
ci = #w1w2 . . . w`−1qw` . . . wr#

I the head is on w`

I ci `M ci+1

I describes a branch of computation of M

I a table is accepting if any row is an accepting configuration

SAT ∈ NP-complete

q0 w1 w2 . . . wn t . . . t

#

#

#

#

#

#

window
nk

nk

starting configuration

second configuration

nk-th configuration

SAT ∈ NP-complete

For each i, j, s, where 1 ≤ i, j ≤ nk and s ∈ Γ ∪K, define a variable

xi,j,s =

{
TRUE if the cell in row i and column j contains the symbol s
FALSE otherwise

Define clauses to guarantee the calculation of M

I there is exactly one symbol in each cell

φcell =
∧

1≤i,j≤nk

(∨
s∈Γ∪K

xi,j,s

)
∧

 ∧
s,t∈Γ∪K

s 6=t

(
x̄i,j,s ∨ x̄i,j,t

)

SAT ∈ NP-complete

I the first row corresponds to the starting configuration

φstart = x1,1,# ∧ x1,2,q0 ∧
x1,3,w1 ∧ x1,4,w2 ∧ . . . ∧ x1,n+2,wn ∧
x1,n+2,t ∧ . . . ∧ x1,nk−1,t ∧ x1,nk,#

I there is an accepting state

φaccept =
∨

1≤i,j≤nk

xi,j,yes

SAT ∈ NP-complete

I every window is legal
I example: legal configurations for

∆(q1, a) = {(q1, b,→)} and ∆(q1, b) = {(q2, c,←), (q2, a,→)}

q2 a c

a q1 b
(a)

a a q2

a q1 b
(b)

a a b

a a q1
(c)

b a

b a
(d)

a b q2

a b a
(e)

c b b

b b b
(f)

I then,

φi,j
legal =

∨
a1,...,a6

is a legal window

(
xi,j−1,a1∧xi,j,a2∧xi,j+1,a3∧xi+1,j−1,a4∧xi+1,j,a5∧xi+1,j+1,a6

)

φmove =
∧

1≤i,j≤nk

φi,jlegal

SAT ∈ NP-complete

Construct F = φcell ∧ φstart ∧ φaccept ∧ φmove

I F has nO(k) variables and clauses

Theorem: F is satisfiable if and only if A is decided by M

3SAT ∈ NP-complete

3SAT ∈ NP-complete

3SAT Problem

I as SAT but each clause has at most 3 literals

How can we prove a problem A is NP-complete?

I show that the problem is NP

I find a suitable problem B that is NP-complete

I show that B ≤P A
I find a polynomial transformation that transforms each instance IB of
B to an instance IA of A

I prove that there is a solution for the problem B on the instance IB if
and only if there is a solution for the problem A on the instance IA.

3SAT ∈ NP-complete

3SAT is in NP

I given an assignment of variables, scan all clauses to check if they
evaluate to TRUE

SAT ≤P 3SAT
Transformation: given any formula F of SAT in CNF with m clauses
and n variables, we construct a formula F ′ of 3SAT:

I replace each clause (a1 ∨ a2 ∨ . . . ∨ a`) in F with `− 2 clauses

(a1∨a2∨z1)∧ (z̄1∨a3∨z2)∧ (z̄2∨a4∨z3)∧ . . .∧ (z̄`−3∨a`−1∨a`)

1. Polynomiality: F ′ has O(nm) variables and clauses

2. F is satisfiable iff F ′ is satisfiable

3SAT ∈ NP-complete

SAT ≤P 3SAT
Transformation: given any formula F of SAT in CNF with m clauses
and n variables, we construct a formula F ′ of 3SAT:
I replace each clause (a1 ∨ a2 ∨ . . . ∨ a`) in F with `− 2 clauses

(a1∨a2∨z1)∧ (z̄1∨a3∨z2)∧ (z̄2∨a4∨z3)∧ . . .∧ (z̄`−3∨a`−1∨a`)
Proving F is satisfiable iff F ′ is satisfiable

1. F ′ is satisfiable if F is satisfiable
I assume that F is satisfiable
I then some ai is TRUE for all clauses
I use the same assignment for the common variables of F and F ′
I set zj = TRUE for 1 ≤ j ≤ i− 2
I set zj = FALSE for i− 1 ≤ j ≤ `− 3
I all clauses of F ′ are satisfied

Example

(a1 ∨ a2 ∨ z1) ∧ (z̄1 ∨ a3 ∨ z2) ∧ (z̄2 ∨ a4 ∨ z3) ∧ (z̄3 ∨ a5 ∨ a6)

(F ∨ F ∨ z1) ∧ (z̄1 ∨ T ∨ z2) ∧ (z̄2 ∨ F ∨ z3) ∧ (z̄3 ∨ F ∨ F)

(F ∨ F ∨ T) ∧ (F ∨ T ∨ F) ∧ (T ∨ F ∨ F) ∧ (T ∨ F ∨ F)

3SAT ∈ NP-complete

SAT ≤P 3SAT
Transformation: given any formula F of SAT in CNF with m clauses
and n variables, we construct a formula F ′ of 3SAT:

I replace each clause (a1 ∨ a2 ∨ . . . ∨ a`) in F with `− 2 clauses

(a1∨a2∨z1)∧ (z̄1∨a3∨z2)∧ (z̄2∨a4∨z3)∧ . . .∧ (z̄`−3∨a`−1∨a`)

Proving F is satisfiable iff F ′ is satisfiable

1. F ′ is satisfiable if F is satisfiable X

2. F is satisfiable if F ′ is satisfiable
I assume that F ′ is satisfiable
I at least one of the literals ai should be TRUE for each clause
I if not, then z1 should be TRUE which implies that z2 should be

TRUE, etc
I hence, the clause (z̄`−3 ∨ a`−1 ∨ a`) is not satisfiable, contradiction
I then there is an assignment that satisfies F

3SAT ∈ NP-complete

I 3SAT is in NP X
I give a transformation form SAT to 3SAT X
I it is polynomial X
I F ∈ SAT is satisfiable iff F ′ ∈ 3SAT is satisfiable X

⇒ 3SAT ∈ NP-complete

MAX-2SAT ∈ NP-complete

MAX-2SAT ∈ NP-complete

MAX-2SAT = {〈F , k〉 | F is a formula with k TRUE clauses}

MAX-2SAT is in NP

I given an assignment of variables, scan all clauses to check if there
are at least k of them evaluated to TRUE

3SAT ≤P MAX-2SAT

1. given any formula F of 3SAT, we construct a formula F ′ of
MAX-2SAT
I replace each clause (x ∨ y ∨ z) with

(x)∧(y)∧(z)∧(x̄∨ȳ)∧(ȳ∨z̄)∧(z̄∨x̄)∧(w)∧(w̄∨x)∧(w̄∨y)∧(w̄∨z)

I k = 7m (m is the number of clauses)

2. F ′ has O(n+m) variables and O(m) clauses

MAX-2SAT ∈ NP-complete

3SAT ≤P MAX-2SAT

1. recall: replace each clause (x ∨ y ∨ z) with

(x)∧(y)∧(z)∧(x̄∨ȳ)∧(ȳ∨z̄)∧(z̄∨x̄)∧(w)∧(w̄∨x)∧(w̄∨y)∧(w̄∨z)

3. F is satisfiable iff F ′ has at least k satisfied clauses
I assume that F is satisfiable
I if x = T, y = F and z = F, then set w = F: 7 satisfied clauses
I if x = T, y = T and z = F, then set w = F: 7 satisfied clauses
I if x = T, y = T and z = T, then set w = T: 7 satisfied clauses
I in all cases, there are 7 satisfied clauses in F ′ for each clause of F

I contrapositive: assume that F is not satisfiable
I there is one clause for which x = y = z = F
I then, in F ′ we correspondingly have:

– 4 satisfied clauses if w = T
– 6 satisfied clauses if w = F

I hence, in F ′ there are less than k clauses that are satisfied

CLIQUE ∈ NP-complete

CLIQUE ∈ NP-complete

CLIQUE is in NP
I given a set of vertices, check if there is an edge between any pair of

them

3SAT ≤P CLIQUE

1. given any formula F of SAT, we construct an instance I = 〈G, k〉
of CLIQUE
I add a vertex for each literal
I add an edge between any two literals except:

(a) literals in the same clause
(b) a literal and its negation

I k = m (number of clauses)
I example: F = (x1 ∨ x2 ∨ x̄3) ∧ (x1 ∨ x3 ∨ x4) ∧ (x̄2 ∨ x3 ∨ x̄4)

x1

x2

x̄3

x1 x3 x4

x̄2

x3

x̄4

CLIQUE ∈ NP-complete

3SAT ≤P CLIQUE

2. |V | = 3m, |E| = O(m2)

3. F is satisfiable iff there is a clique of size k in G
I assume that F is satisfiable
I at least one literal is TRUE in any clause
I there is an edge between such literals (why?)
I hence, the corresponding vertices form a k-clique

I assume there is a k-clique in G
I this clique contains at most one vertex from each clause
I k = m, hence the clique contains exactly one vertex from each clause
I each pair of these vertices is compatible (no a literal and its negation)
I set the corresponding literals to TRUE
I F is satisfiable

Summarize: NP-completeness proofs

Summarize: NP-completeness proofs

1. Prove that the problem is in NP (give a verifier)

2. Give a polynomial time reduction from a known NP-complete
problem
I important: choose the correct problem

NP-complete problems

SAT

3SAT

CLIQUE

IndSet VCover

MAX-2SAT

Exercises

I Show that Independent Set is NP-complete by a reduction
from 3-SAT or Clique, where

Independent Set = {〈G, k〉 | G = (V,E) is a graph with a set
A ⊆ V such that |A| = k and for each x, y ∈ A with x 6= y, it holds
that {x, y} 6∈ E}.

I Show that Vertex Cover is NP-complete by a reduction from
3-SAT, Clique or Independent Set, where

Vertex Cover = {〈G, k〉 | G = (V,E) is a graph with a set
A ⊆ V such that |A| = k and every e ∈ E is incident to a vertex in
A}

I Show that 3-Coloring is NP-complete by a reduction from
3-SAT where

3-Coloring = {〈G, k〉 | G = (V,E) is a graph and there exists a
function f : V → {1, 2, 3} such that for every edge {u, v} ∈ E we
have f(u) 6= f(v)}

	Introduction to the SAT problem
	NP-completeness

