Fundamental Computer Science

Malin Rau and Denis Trystram
(inspired by Giorgio Lucarelli)

February, 2020

Last lecture

- Definition of time complexity classes
- P: problems solvable in $O\left(n^{k}\right)$ time
- NP: problems verifiable in $O\left(n^{k}\right)$ time
- Prove that a problem belongs to NP
- give a polynomial-time verifier
- (give a Non-deterministic Turing Machine)
- Reduction from problem A to problem $\mathrm{B} \quad\left(A \leq_{\mathrm{P}} B\right)$

1. transform an instance I_{A} of A to an instance I_{B} of B
2. show that the reduction is of polynomial size
3. prove that:
"there is a solution for the problem A on the instance I_{A} if and only if
there is a solution for the problem B on the instance $I_{\mathrm{B}}{ }^{\prime \prime}$

Today

- Definition of the class NP-COMPLETE
- SAT is NP-COMPLETE
- Use reductions to prove NP-COMPLETENESS
- Variants of SAT

Introduction to the SAT problem

Boolean formulas

- x_{i} : a Boolean variable, values TRUE or FALSE
- \bar{x}_{i} : negation of x_{i}
- x_{i}, \bar{x}_{i} : literals
- V : logical OR
- \wedge : logical AND
- $\left(x_{1} \vee \bar{x}_{3} \vee x_{4}\right)$: clause, a set of literals in disjunction
- $\mathcal{F}=\left(x_{1} \vee x_{2} \vee \bar{x}_{3}\right) \wedge\left(\bar{x}_{4}\right) \wedge\left(x_{1} \vee x_{4}\right)$: a Boolean formula in Conjunctive Normal Form (CNF), a set of clauses in conjunction
- every formula can be written in CNF (focus on CNF formulas)
- assignment: give TRUE or FALSE value to variables
- a formula is satisfiable if there is an assignment evaluating to TRUE
- i.e, $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=$ (TRUE, TRUE, TRUE, FALSE) for the above formula \mathcal{F}

The satisfiability problem

- $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$: set of variables
- $C=\left\{c_{1}, c_{2}, \ldots, c_{m}\right\}$: set of clauses
- $\mathcal{F}=c_{1} \wedge c_{2} \wedge \ldots \wedge c_{m}$
$\mathrm{SAT}=\{\langle\mathcal{F}\rangle \mid \mathcal{F}$ is a satisfiable Boolean formula $\}$
- k SAT: each clause has at most k literals (in some definitions exactly k literals)
- example of 2SAT: $\left(x_{1} \vee \bar{x}_{2}\right) \wedge\left(x_{2} \vee x_{3}\right) \wedge\left(x_{2} \vee \bar{x}_{3}\right)$
$2 \mathrm{SAT} \in \mathrm{P}$

$2 S A T \in P$

Preliminaries

- Assume that each clause has exactly two literals
- $x \Rightarrow y$: implication

x	y	$x \Rightarrow y$
FALSE	FALSE	TRUE
TRUE	FALSE	FALSE
FALSE	TRUE	TRUE
TRUE	TRUE	TRUE

- $x \Rightarrow y=\bar{x} \vee y$

x	y	\bar{x}	$\bar{x} \vee y$
FALSE	FALSE	TRUE	TRUE
TRUE	FALSE	FALSE	FALSE
FALSE	TRUE	TRUE	TRUE
TRUE	TRUE	FALSE	TRUE

$2 S A T \in P$

- Construct a directed graph G
- for each literal $x \in X \cup \bar{X}$, add a vertex
- for each clause $x \vee y$, add the $\operatorname{arcs}(\bar{x}, y)$ and (\bar{y}, x) corresponds to implications $\bar{x} \Rightarrow y$ and $\bar{y} \Rightarrow x$

$$
\mathcal{F}=\left(x_{1} \vee \bar{x}_{2}\right) \wedge\left(\bar{x}_{1} \vee \bar{x}_{3}\right) \wedge\left(x_{1} \vee x_{2}\right) \wedge\left(\bar{x}_{3} \vee x_{4}\right) \wedge\left(\bar{x}_{1} \vee x_{4}\right)
$$

We want $\left(\bar{x}_{1} \vee x_{4}\right)=$ TRUE

- arc $\left(x_{1}, x_{4}\right)$ means:
- if $x_{1}=\mathrm{T}$ then x_{4} should be T
- if $x_{4}=\mathrm{F}$ then x_{1} should be F
- arc (\bar{x}_{4}, \bar{x}_{1}) means:
- if $\bar{x}_{4}=\mathrm{T}$ then \bar{x}_{1} should be T
- if $\bar{x}_{1}=\mathrm{F}$ then \bar{x}_{4} should be F

$2 \mathrm{SAT} \in \mathrm{P}$

Lemma

If there is a path from x to y in G, then there is also a path from \bar{y} to \bar{x}.
Proof:

$$
x \longrightarrow \cdots \longrightarrow a \longrightarrow b \longrightarrow \cdots \longrightarrow y
$$

- By construction:
- we add an arc (a, b) if $(\bar{a} \vee b)$ exists in \mathcal{F}
- but if $(\bar{a} \vee b)$ exists in \mathcal{F}, then we add also the arc (\bar{b}, \bar{a})
- Apply the argument for all arcs in the path from x to y

$$
\bar{x} \longleftarrow \cdots \longleftarrow \bar{a} \longleftarrow \bar{b} \longleftarrow \cdots \longleftarrow \bar{y}
$$

$2 S A T \in P$

Lemma

If there is a variable x such that G has both a path from x to \bar{x} and a path from \bar{x} to x, then \mathcal{F} is not satisfiable.

$$
\mathcal{F}=\left(x_{1} \vee \bar{x}_{2}\right) \wedge\left(x_{2} \vee \bar{x}_{3}\right) \wedge\left(x_{3} \vee \bar{x}_{4}\right) \wedge\left(x_{4} \vee \bar{x}_{1}\right) \wedge\left(\bar{x}_{4} \vee \bar{x}_{1}\right) \wedge\left(x_{2} \vee x_{3}\right)
$$

$$
\text { If } x_{1}=\text { TRUE, then }
$$

$$
x_{4} \text { should be TRUE, and then }
$$ ($\bar{x}_{4} \vee \bar{x}_{1}$) is not satisfiable

If $x_{1}=$ FALSE, then x_{2} should be FALSE, and then \bar{x}_{3} should be FALSE, and then $\left(x_{2} \vee x_{3}\right)$ is not satisfiable

$2 S A T \in P$

Lemma

If there is a variable x such that G has both a path from x to \bar{x} and a path from \bar{x} to x, then \mathcal{F} is not satisfiable.

Proof:

- assume that \mathcal{F} is satisfiable (for contradiction)
- case 1: $x=$ TRUE

There should be an $\operatorname{arc}(a, b)$ with $a=\mathrm{T}$ and $b=\mathrm{F}$.
That is, $(\bar{a} \vee b)$ is not satisfiable.
Hence, x cannot be TRUE.

- case 2: $x=$ FALSE

Same arguments give that x cannot be FALSE on path from \bar{x} to x.

- Then, \mathcal{F} is not satisfiable, a contradiction.

$2 S A T \in P$

Algorithm

1. while there are non-assigned variables do
2. Select a literal a for which there is not a path from a to \bar{a}.
3. Set $a=$ TRUE.
4. Assign TRUE to all reachable literals from a.
5. Eliminate all assigned variables from G.

$$
\mathcal{F}=\left(x_{1} \vee \bar{x}_{2}\right) \wedge\left(\bar{x}_{1} \vee \bar{x}_{3}\right) \wedge\left(x_{1} \vee x_{2}\right) \wedge\left(\bar{x}_{3} \vee x_{4}\right) \wedge\left(\bar{x}_{1} \vee x_{4}\right)
$$

	T	F	
\bar{x}_{2}			F
x_{2}			T
	F	T	

$2 \mathrm{SAT} \in \mathrm{P}$

Lemma (Correctness of the algorithm)

Consider a literal a selected in Line 2 of the algorithm. There is no path from a to both b and \bar{b}.

Proof:

- Assume there are paths from a to b and from a to \bar{b}.
- Then, there are paths from \bar{b} to \bar{a} and from b to \bar{a} (by the first lemma)
- Thus, there are paths from a to \bar{a} (passing through b or \bar{b})
- a cannot be selected by the algorithm because we only select a if there is not a path from a to \bar{a}, a contradiction.

Exercise

A Horn formula has at most one positive literal per clause. Prove that Horn-SAT $\in \mathrm{P}$, where

$$
\text { Horn-SAT }=\{\langle\mathcal{F}\rangle \mid \mathcal{F} \text { is a satisfiable Horn formula }\}
$$

Example:
$\mathcal{F}=\left(x_{1} \vee \bar{x}_{2} \vee \bar{x}_{5} \vee \bar{x}_{3}\right) \wedge\left(x_{2} \vee \overline{x_{3}} \vee \bar{x}_{4}\right) \wedge\left(\bar{x}_{1} \vee \bar{x}_{5}\right) \wedge\left(x_{3} \vee \bar{x}_{4}\right) \wedge\left(x_{4}\right)$

- negative literal $\bar{x}_{i}, i \in \mathbb{N}$
- positive literal $x_{i}, i \in \mathbb{N}$

Tipp:

- What has to happen to clauses that contain only one single literal?
- Consider the case that each clause contains a negative literal.

Solution

A Horn formula has at most one positive literal per clause. Prove that Horn-SAT $\in \mathrm{P}$, where

$$
\text { Horn-SAT }=\{\langle\mathcal{F}\rangle \mid \mathcal{F} \text { is a satisfiable Horn formula }\}
$$

Algorithm:

1. while there are clauses with only one literal
1.1 pic a clause c with only one literal
1.2 set the corresponding variable to TRUE or FALSE such that the clause is satisfied
1.3 delete all clauses that are satisfied by the assignment and remove the variable from all the other clauses
2. set all non assigned variables to FALSE

After step 1 all the clauses contain at least one negative literal.
Therefore, after setting all variables to FALSE in step 2 every clause will contain at least one literal that is TRUE. Hence all the clauses are satisfied. The algorithm has a time complexity of at most $\mathcal{O}\left((m n)^{2}\right)$

NP-COMPLETENESS

NP-COMPLETENESS

Definition

A language B is NP-COMPlete if

- B is in NP, and
- every language A in NP is polynomially reducible to B.

Theorem

If B is NP-complete and $B \in \mathrm{P}$, then $\mathrm{P}=\mathrm{NP}$.
Proof:

- direct from the definition of reducibility

NP-COMPLETENESS

Definition

A language B is NP-COMPlete if

- B is in NP, and
- every language A in NP is polynomially reducible to B.

Theorem

If B is NP-COMPLETE and $B \leq_{\mathrm{P}} C$ for $C \in \mathrm{NP}$, then C is NP-COMPLETE

Proof:

- initially, $C \in \mathrm{NP}$
- we need to show: "every $A \in$ NP polynomially reduces to C "
- every language in NP polynomially reduces to B
- B polynomially reduces to C

SAT \in NP-COMPLETE

Cook-Levin theorem

Theorem
SAT $\in \mathrm{P}$ if and only if $\mathrm{P}=\mathrm{NP}$.
equivalently: SAT is NP-complete.

SAT \in NP-COMPLETE

SAT is in NP

- given an assignment of variables, scan all clauses to check if they evaluate to TRUE
$A \leq{ }_{\mathrm{P}}$ SAT for every language $A \in \mathrm{NP}$
- M: a Non-Deterministic Turing Machine that decides A in n^{k} time
- create a table of size $n^{k} \times n^{k}$
- each row i corresponds to a configuration

$$
c_{i}=\# w_{1} w_{2} \ldots w_{\ell-1} q w_{\ell} \ldots w_{r} \#
$$

- the head is on w_{ℓ}
- $c_{i} \vdash_{M} c_{i+1}$
- describes a branch of computation of M
- a table is accepting if any row is an accepting configuration

SAT \in NP-COMPLETE

\qquad
starting configuration second configuration
n^{k}-th configuration

SAT \in NP-COMPLETE

For each i, j, s, where $1 \leq i, j \leq n^{k}$ and $s \in \Gamma \cup K$, define a variable $x_{i, j, s}= \begin{cases}\text { TRUE } & \text { if the cell in row } i \text { and column } j \text { contains the symbol } s \\ \text { FALSE } & \text { otherwise }\end{cases}$

Define clauses to guarantee the calculation of M

- there is exactly one symbol in each cell

$$
\phi_{\text {cell }}=\bigwedge_{1 \leq i, j \leq n^{k}}\left[\left(\bigvee_{s \in \Gamma \cup K} x_{i, j, s}\right) \wedge\left(\bigwedge_{\substack{s, t \in\lceil\cup K \\ s \neq t}}\left(\bar{x}_{i, j, s} \vee \bar{x}_{i, j, t}\right)\right)\right]
$$

SAT \in NP-COMPLETE

- the first row corresponds to the starting configuration

$$
\begin{aligned}
\phi_{\text {start }}= & x_{1,1, \#} \wedge x_{1,2, q_{0}} \wedge \\
& x_{1,3, w_{1}} \wedge x_{1,4, w_{2}} \wedge \ldots \wedge x_{1, n+2, w_{n}} \wedge \\
& x_{1, n+2, \sqcup} \wedge \ldots \wedge x_{1, n^{k}-1, \sqcup} \wedge x_{1, n^{k}, \#}
\end{aligned}
$$

- there is an accepting state

$$
\phi_{\text {accept }}=\bigvee_{1 \leq i, j \leq n^{k}} x_{i, j, y e s}
$$

SAT \in NP-COMPLETE

- every window is legal
- example: legal configurations for

$$
\Delta\left(q_{1}, a\right)=\left\{\left(q_{1}, b, \rightarrow\right)\right\} \text { and } \Delta\left(q_{1}, b\right)=\left\{\left(q_{2}, c, \leftarrow\right),\left(q_{2}, a, \rightarrow\right)\right\}
$$

(a) | a | q_{1} | b |
| :---: | :---: | :---: |
| q_{2} | a | $c \mid$ |

(b)

a	q_{1}	b
a	a	q_{2}

(c)

a	a	q_{1}
a	a	b

(d)

$\#$	b	a
$\#$	b	a

(e)

a	b	a
a	b	q_{2}

(f)

b	b	b
c	b	b

- then,

$$
\phi_{\text {move }}=\bigwedge_{1 \leq i, j \leq n^{k}} \phi_{\text {legal }}^{i, j}
$$

SAT \in NP-COMPLETE

Construct $\mathcal{F}=\phi_{\text {cell }} \wedge \phi_{\text {start }} \wedge \phi_{\text {accept }} \wedge \phi_{\text {move }}$

- \mathcal{F} has $n^{O(k)}$ variables and clauses

Theorem: \mathcal{F} is satisfiable if and only if A is decided by M

3 SAT \in NP-COMPLETE

3 SAT \in NP-COMPLETE

3SAT Problem

- as SAT but each clause has at most 3 literals

How can we prove a problem A is NP-Complete?

- show that the problem is NP
- find a suitable problem B that is NP-COMPlete
- show that $B \leq_{P} A$
- find a polynomial transformation that transforms each instance I_{B} of B to an instance I_{A} of A
- prove that there is a solution for the problem B on the instance I_{B} if and only if there is a solution for the problem A on the instance I_{A}.

3 SAT \in NP-COMPLETE

3SAT is in NP

- given an assignment of variables, scan all clauses to check if they evaluate to TRUE

SAT $\leq_{\text {P }} 3$ SAT

Transformation: given any formula \mathcal{F} of SAT in CNF with m clauses and n variables, we construct a formula \mathcal{F}^{\prime} of 3SAT:

- replace each clause ($a_{1} \vee a_{2} \vee \ldots \vee a_{\ell}$) in \mathcal{F} with $\ell-2$ clauses $\left(a_{1} \vee a_{2} \vee z_{1}\right) \wedge\left(\bar{z}_{1} \vee a_{3} \vee z_{2}\right) \wedge\left(\bar{z}_{2} \vee a_{4} \vee z_{3}\right) \wedge \ldots \wedge\left(\bar{z}_{\ell-3} \vee a_{\ell-1} \vee a_{\ell}\right)$

1. Polynomiality: \mathcal{F}^{\prime} has $O(n m)$ variables and clauses
2. \mathcal{F} is satisfiable iff \mathcal{F}^{\prime} is satisfiable

3 SAT \in NP-COMPLETE

SAT $\leq_{\text {P }} 3$ SAT
Transformation: given any formula \mathcal{F} of SAT in CNF with m clauses and n variables, we construct a formula \mathcal{F}^{\prime} of 3SAT:

- replace each clause ($a_{1} \vee a_{2} \vee \ldots \vee a_{\ell}$) in \mathcal{F} with $\ell-2$ clauses

$$
\left(a_{1} \vee a_{2} \vee z_{1}\right) \wedge\left(\bar{z}_{1} \vee a_{3} \vee z_{2}\right) \wedge\left(\bar{z}_{2} \vee a_{4} \vee z_{3}\right) \wedge \ldots \wedge\left(\bar{z}_{\ell-3} \vee a_{\ell-1} \vee a_{\ell}\right)
$$

Proving \mathcal{F} is satisfiable iff \mathcal{F}^{\prime} is satisfiable

1. \mathcal{F}^{\prime} is satisfiable if \mathcal{F} is satisfiable

- assume that \mathcal{F} is satisfiable
- then some a_{i} is TRUE for all clauses
- use the same assignment for the common variables of \mathcal{F} and \mathcal{F}^{\prime}
- set $z_{j}=$ TRUE for $1 \leq j \leq i-2$
- set $z_{j}=$ FALSE for $i-1 \leq j \leq \ell-3$
- all clauses of \mathcal{F}^{\prime} are satisfied

Example

$$
\begin{array}{r}
\left(a_{1} \vee a_{2} \vee z_{1}\right) \wedge\left(\bar{z}_{1} \vee a_{3} \vee z_{2}\right) \wedge\left(\bar{z}_{2} \vee a_{4} \vee z_{3}\right) \wedge\left(\bar{z}_{3} \vee a_{5} \vee a_{6}\right) \\
\left(F \vee F \vee z_{1}\right) \wedge\left(\bar{z}_{1} \vee T \vee z_{2}\right) \wedge\left(\bar{z}_{2} \vee F \vee z_{3}\right) \wedge\left(\bar{z}_{3} \vee F \vee F\right) \\
(F \vee F \vee T) \wedge(F \vee T \vee F) \wedge(T \vee F \vee F) \wedge(T \vee F \vee F)
\end{array}
$$

3 SAT \in NP-COMPLETE

SAT $\leq_{\text {P }} 3$ SAT
Transformation: given any formula \mathcal{F} of SAT in CNF with m clauses and n variables, we construct a formula \mathcal{F}^{\prime} of 3SAT:

- replace each clause ($a_{1} \vee a_{2} \vee \ldots \vee a_{\ell}$) in \mathcal{F} with $\ell-2$ clauses

$$
\left(a_{1} \vee a_{2} \vee z_{1}\right) \wedge\left(\bar{z}_{1} \vee a_{3} \vee z_{2}\right) \wedge\left(\bar{z}_{2} \vee a_{4} \vee z_{3}\right) \wedge \ldots \wedge\left(\bar{z}_{\ell-3} \vee a_{\ell-1} \vee a_{\ell}\right)
$$

Proving \mathcal{F} is satisfiable iff \mathcal{F}^{\prime} is satisfiable

1. \mathcal{F}^{\prime} is satisfiable if \mathcal{F} is satisfiable \checkmark
2. \mathcal{F} is satisfiable if \mathcal{F}^{\prime} is satisfiable

- assume that \mathcal{F}^{\prime} is satisfiable
- at least one of the literals a_{i} should be TRUE for each clause
- if not, then z_{1} should be TRUE which implies that z_{2} should be TRUE, etc
- hence, the clause ($\bar{z}_{\ell-3} \vee a_{\ell-1} \vee a_{\ell}$) is not satisfiable, contradiction
- then there is an assignment that satisfies \mathcal{F}

3 SAT \in NP-COMPLETE

- 3SAT is in NP \checkmark
- give a transformation form SAT to 3SAT \checkmark
- it is polynomial \checkmark
- $\mathcal{F} \in$ SAT is satisfiable iff $\mathcal{F}^{\prime} \in 3$ SAT is satisfiable \checkmark
$\Rightarrow 3$ SAT \in NP-COMPLETE

MAX-2SAT \in NP-COMPLETE

MAX-2SAT \in NP-COMPLETE

MAX-2SAT $=\{\langle\mathcal{F}, k\rangle \mid \mathcal{F}$ is a formula with k TRUE clauses $\}$

MAX-2SAT is in NP

- given an assignment of variables, scan all clauses to check if there are at least k of them evaluated to TRUE

3 SAT $\leq_{\text {P }}$ MAX- 2 SAT

1. given any formula \mathcal{F} of 3 SAT, we construct a formula \mathcal{F}^{\prime} of MAX-2SAT

- replace each clause ($x \vee y \vee z$) with

$$
(x) \wedge(y) \wedge(z) \wedge(\bar{x} \vee \bar{y}) \wedge(\bar{y} \vee \bar{z}) \wedge(\bar{z} \vee \bar{x}) \wedge(w) \wedge(\bar{w} \vee x) \wedge(\bar{w} \vee y) \wedge(\bar{w} \vee z)
$$

- $k=7 m$ (m is the number of clauses)

2. \mathcal{F}^{\prime} has $O(n+m)$ variables and $O(m)$ clauses

MAX-2SAT \in NP-COMPLETE

3 SAT \leq_{P} MAX-2SAT

1. recall: replace each clause ($x \vee y \vee z$) with

$$
(x) \wedge(y) \wedge(z) \wedge(\bar{x} \vee \bar{y}) \wedge(\bar{y} \vee \bar{z}) \wedge(\bar{z} \vee \bar{x}) \wedge(w) \wedge(\bar{w} \vee x) \wedge(\bar{w} \vee y) \wedge(\bar{w} \vee z)
$$

3. \mathcal{F} is satisfiable iff \mathcal{F}^{\prime} has at least k satisfied clauses

- assume that \mathcal{F} is satisfiable
- if $x=\mathrm{T}, y=\mathrm{F}$ and $z=\mathrm{F}$, then set $w=\mathrm{F}: 7$ satisfied clauses
- if $x=\mathrm{T}, y=\mathrm{T}$ and $z=\mathrm{F}$, then set $w=\mathrm{F}: 7$ satisfied clauses
- if $x=\mathrm{T}, y=\mathrm{T}$ and $z=\mathrm{T}$, then set $w=\mathrm{T}: 7$ satisfied clauses
- in all cases, there are 7 satisfied clauses in \mathcal{F}^{\prime} for each clause of \mathcal{F}
- contrapositive: assume that \mathcal{F} is not satisfiable
- there is one clause for which $x=y=z=\mathrm{F}$
- then, in \mathcal{F}^{\prime} we correspondingly have:
- 4 satisfied clauses if $w=\mathrm{T}$
-6 satisfied clauses if $w=\mathrm{F}$
- hence, in \mathcal{F}^{\prime} there are less than k clauses that are satisfied

CLIQUE \in NP-complete

CLIQUE \in NP-COMPLETE

CLIQUE is in NP

- given a set of vertices, check if there is an edge between any pair of them

3 SAT \leq_{P} CLIQUE

1. given any formula \mathcal{F} of SAT, we construct an instance $I=\langle G, k\rangle$ of CLIQUE

- add a vertex for each literal
- add an edge between any two literals except:
(a) literals in the same clause
(b) a literal and its negation
- $k=m$ (number of clauses)
- example: $\mathcal{F}=\left(x_{1} \vee x_{2} \vee \bar{x}_{3}\right) \wedge\left(x_{1} \vee x_{3} \vee x_{4}\right) \wedge\left(\bar{x}_{2} \vee x_{3} \vee \bar{x}_{4}\right)$

CLIQUE \in NP-COMPLETE

3 SAT \leq_{P} CLIQUE

2. $|V|=3 m,|E|=O\left(m^{2}\right)$
3. \mathcal{F} is satisfiable iff there is a clique of size k in G

- assume that \mathcal{F} is satisfiable
- at least one literal is TRUE in any clause
there is an edge between such literals (why?)
- hence, the corresponding vertices form a k-clique
- assume there is a k-clique in G
- this clique contains at most one vertex from each clause
- $k=m$, hence the clique contains exactly one vertex from each clause
- each pair of these vertices is compatible (no a literal and its negation)
- set the corresponding literals to TRUE
- \mathcal{F} is satisfiable

Summarize: NP-COMPLETENESS proofs

Summarize: NP-COMPLETENESS proofs

1. Prove that the problem is in NP (give a verifier)
2. Give a polynomial time reduction from a known NP-COMPLETE problem

- important: choose the correct problem

NP-COMPLETE problems

Exercises

- Show that Independent Set is NP-complete by a reduction from 3-SAT or Clique, where
Independent Set $=\{\langle G, k\rangle \mid G=(V, E)$ is a graph with a set $A \subseteq V$ such that $|A|=k$ and for each $x, y \in A$ with $x \neq y$, it holds that $\{x, y\} \notin E\}$.
- Show that Vertex Cover is NP-complete by a reduction from 3-SAT, Clique or Independent Set, where
Vertex Cover $=\{\langle G, k\rangle \mid G=(V, E)$ is a graph with a set $A \subseteq V$ such that $|A|=k$ and every $e \in E$ is incident to a vertex in A\}
- Show that 3-Coloring is NP-Complete by a reduction from 3-SAT where
3-Coloring $=\{\langle G, k\rangle \mid G=(V, E)$ is a graph and there exists a function $f: V \rightarrow\{1,2,3\}$ such that for every edge $\{u, v\} \in E$ we have $f(u) \neq f(v)\}$

