
Fundamental Computer Science

Denis Trystram
MoSIG1 – University Grenoble-Alpes

February 10, 2020

Summary of previous lecture

I Turing Machines
I universal computational model
I all variants of the model are equivalent w.r.t. decidability

Complement

I Non-deterministic Turing Machines
I decide the same languages as the deterministic
I ... but not using the same number of steps

Agenda

I Reduction

I Goal: to classify the problems in complexity classes

I time complexity: number of steps w.r.t. the size of the input
I space complexity

Focus on decidable languages (solvable problems)

Agenda

I Reduction

I Goal: to classify the problems in complexity classes

I time complexity: number of steps w.r.t. the size of the input
I space complexity

Focus on decidable languages (solvable problems)

Time complexity class

Let f : N→ N be a function. We define the time complexity class

TIME(f(n)) = {L | L is a language decided by a Turing Machine
in O(f(n)) time, where n is the size of the input}

Example: L = {0k1k | k ≥ 0}

M1 = “On input w:

1. Scan the tape and reject if a 0 is found on the right of a 1.

2. Repeatedly scan the tape deleting each time a single 0 and a
single 1.

3. If no 0’s and no 1’s remain in the tape then accept, else reject.”

Time complexity class

Let f : N→ N be a function. We define the time complexity class

TIME(f(n)) = {L | L is a language decided by a Turing Machine
in O(f(n)) time, where n is the size of the input}

Example: L = {0k1k | k ≥ 0}

M1 = “On input w:

1. Scan the tape and reject if a 0 is found on the right of a 1.

2. Repeatedly scan the tape deleting each time a single 0 and a
single 1.

3. If no 0’s and no 1’s remain in the tape then accept, else reject.”

Time complexity class

Let f : N→ N be a function. We define the time complexity class

TIME(f(n)) = {L | L is a language decided by a Turing Machine
in O(f(n)) time, where n is the size of the input}

Example: L = {0k1k | k ≥ 0} ∈ TIME(n2)

M1 = “On input w:

1. Scan the tape and reject if a 0 is found on the right of a 1.

2. Repeatedly scan the tape deleting each time a single 0 and a
single 1.

3. If no 0’s and no 1’s remain in the tape then accept, else reject.”

Time complexity class

Let f : N→ N be a function. We define the time complexity class

TIME(f(n)) = {L | L is a language decided by a Turing Machine
in O(f(n)) time, where n is the size of the input}

Example: L = {0k1k | k ≥ 0}

M2 = “On input w:

1. Scan the tape and reject if a 0 is found on the right of a 1.

2. Repeat:

2.1 scan the tape deleting every second 0 and then every second 1.

3. If no 0’s and no 1’s remain in the tape then accept, else reject.”

Time complexity class

Let f : N→ N be a function. We define the time complexity class

TIME(f(n)) = {L | L is a language decided by a Turing Machine
in O(f(n)) time, where n is the size of the input}

Example: L = {0k1k | k ≥ 0} ∈ TIME(n log2 n)

M2 = “On input w:

1. Scan the tape and reject if a 0 is found on the right of a 1.

2. Repeat:

2.1 scan the tape deleting every second 0 and then every second 1.

3. If no 0’s and no 1’s remain in the tape then accept, else reject.”

The class P

A Turing Machine M = (K,Σ,Γ, δ, s,H) is called polynomially
bounded if there is a polynomial p and for any input w there is no

configuration C such that (s,tw) `p(|w|)M C.

A language is called polynomially decidable if there is a polynomially
bounded Turing Machine that decides it.

P is the class of polynomially decidable languages.

P =
⋃
k

TIME(nk)

The class P

A Turing Machine M = (K,Σ,Γ, δ, s,H) is called polynomially
bounded if there is a polynomial p and for any input w there is no

configuration C such that (s,tw) `p(|w|)M C.

A language is called polynomially decidable if there is a polynomially
bounded Turing Machine that decides it.

P is the class of polynomially decidable languages.

P =
⋃
k

TIME(nk)

Recall: languages vs problems

I Decision problem: a problem with a yes/no answer

I example
PATH: Given a graph G = (V,E) and two nodes s, t ∈ V , is there
a path from s to t?

I Is PATH a language? No

I How to define the language corresponding to PATH?

PATH = {〈G, s, t〉 | G is a graph that has a path from s to t}
I 〈G, s, t〉 is the input
I |〈G, s, t〉| is the size of the input

I PATH ∈ P?
I Yes (i.e., Breadth First Search in O(|V |+ |E|))

Recall: languages vs problems

I Decision problem: a problem with a yes/no answer

I example
PATH: Given a graph G = (V,E) and two nodes s, t ∈ V , is there
a path from s to t?

I Is PATH a language?

No

I How to define the language corresponding to PATH?

PATH = {〈G, s, t〉 | G is a graph that has a path from s to t}
I 〈G, s, t〉 is the input
I |〈G, s, t〉| is the size of the input

I PATH ∈ P?
I Yes (i.e., Breadth First Search in O(|V |+ |E|))

Recall: languages vs problems

I Decision problem: a problem with a yes/no answer

I example
PATH: Given a graph G = (V,E) and two nodes s, t ∈ V , is there
a path from s to t?

I Is PATH a language? No

I How to define the language corresponding to PATH?

PATH = {〈G, s, t〉 | G is a graph that has a path from s to t}
I 〈G, s, t〉 is the input
I |〈G, s, t〉| is the size of the input

I PATH ∈ P?
I Yes (i.e., Breadth First Search in O(|V |+ |E|))

Recall: languages vs problems

I Decision problem: a problem with a yes/no answer

I example
PATH: Given a graph G = (V,E) and two nodes s, t ∈ V , is there
a path from s to t?

I Is PATH a language? No

I How to define the language corresponding to PATH?

PATH = {〈G, s, t〉 | G is a graph that has a path from s to t}
I 〈G, s, t〉 is the input
I |〈G, s, t〉| is the size of the input

I PATH ∈ P?
I Yes (i.e., Breadth First Search in O(|V |+ |E|))

Recall: languages vs problems

I Decision problem: a problem with a yes/no answer

I example
PATH: Given a graph G = (V,E) and two nodes s, t ∈ V , is there
a path from s to t?

I Is PATH a language? No

I How to define the language corresponding to PATH?

PATH = {〈G, s, t〉 | G is a graph that has a path from s to t}
I 〈G, s, t〉 is the input
I |〈G, s, t〉| is the size of the input

I PATH ∈ P?

I Yes (i.e., Breadth First Search in O(|V |+ |E|))

Recall: languages vs problems

I Decision problem: a problem with a yes/no answer

I example
PATH: Given a graph G = (V,E) and two nodes s, t ∈ V , is there
a path from s to t?

I Is PATH a language? No

I How to define the language corresponding to PATH?

PATH = {〈G, s, t〉 | G is a graph that has a path from s to t}
I 〈G, s, t〉 is the input
I |〈G, s, t〉| is the size of the input

I PATH ∈ P?
I Yes (i.e., Breadth First Search in O(|V |+ |E|))

Enhanced Turing Machine models

I Does the definition of the class P remains the same if we use
multiple tapes?

YES

I Recall: if a multiple tape Turing Machine halts on input w after t
steps, then the corresponding single tape Turing Machine halts after
O
(
t(|w|+ t)

)
steps.

Example: L = {0k1k | k ≥ 0}

M3 = “On input w:

1. Scan the tape and reject if a 0 is found on the right of a 1.

2. Copy the 0’s in tape 2.

3. Scan tapes 1 & 2 simultaneously and delete a single 0 from tape 2
and a single 1 from tape 1.

4. If no 0’s and no 1’s remain then accept, else reject.”

I complexity: O(n) ⇒ L ∈ TIME(n2) ⇒ L ∈ P

Enhanced Turing Machine models

I Does the definition of the class P remains the same if we use
multiple tapes? YES

I Recall: if a multiple tape Turing Machine halts on input w after t
steps, then the corresponding single tape Turing Machine halts after
O
(
t(|w|+ t)

)
steps.

Example: L = {0k1k | k ≥ 0}

M3 = “On input w:

1. Scan the tape and reject if a 0 is found on the right of a 1.

2. Copy the 0’s in tape 2.

3. Scan tapes 1 & 2 simultaneously and delete a single 0 from tape 2
and a single 1 from tape 1.

4. If no 0’s and no 1’s remain then accept, else reject.”

I complexity: O(n) ⇒ L ∈ TIME(n2) ⇒ L ∈ P

Enhanced Turing Machine models

I Does the definition of the class P remains the same if we use
multiple tapes? YES

I Recall: if a multiple tape Turing Machine halts on input w after t
steps, then the corresponding single tape Turing Machine halts after
O
(
t(|w|+ t)

)
steps.

Example: L = {0k1k | k ≥ 0}

M3 = “On input w:

1. Scan the tape and reject if a 0 is found on the right of a 1.

2. Copy the 0’s in tape 2.

3. Scan tapes 1 & 2 simultaneously and delete a single 0 from tape 2
and a single 1 from tape 1.

4. If no 0’s and no 1’s remain then accept, else reject.”

I complexity: O(n) ⇒ L ∈ TIME(n2) ⇒ L ∈ P

Enhanced Turing Machine models

I Does the definition of the class P remains the same if we use
multiple tapes? YES

I Recall: if a multiple tape Turing Machine halts on input w after t
steps, then the corresponding single tape Turing Machine halts after
O
(
t(|w|+ t)

)
steps.

Example: L = {0k1k | k ≥ 0}

M3 = “On input w:

1. Scan the tape and reject if a 0 is found on the right of a 1.

2. Copy the 0’s in tape 2.

3. Scan tapes 1 & 2 simultaneously and delete a single 0 from tape 2
and a single 1 from tape 1.

4. If no 0’s and no 1’s remain then accept, else reject.”

I complexity: O(n) ⇒ L ∈ TIME(n2) ⇒ L ∈ P

Enhanced Turing Machine models

I Does the definition of the class P remains the same if we use
multiple tapes? YES

I Recall: if a multiple tape Turing Machine halts on input w after t
steps, then the corresponding single tape Turing Machine halts after
O
(
t(|w|+ t)

)
steps.

Example: L = {0k1k | k ≥ 0}

M3 = “On input w:

1. Scan the tape and reject if a 0 is found on the right of a 1.

2. Copy the 0’s in tape 2.

3. Scan tapes 1 & 2 simultaneously and delete a single 0 from tape 2
and a single 1 from tape 1.

4. If no 0’s and no 1’s remain then accept, else reject.”

I complexity: O(n) ⇒ L ∈ TIME(n2) ⇒ L ∈ P

Extension to space complexity

Non-deterministic Turing Machines

•
•
•
•
•
•
...

•
•

start

accept or reject

f(n)

deterministic computation

•
• •
• • •

...

•
• •

• •
• •

...

•
• reject

accept

f(n)

non-deterministic computation

The running time of a non-deterministic Turing Machine which decides
a language is a function f : N→ N, where f(n) is the maximum number
of steps on any branch of the computation on any input of length n.

Non-deterministic Turing Machines

•
•
•
•
•
•
...

•
•

start

accept or reject

f(n)f(n)

deterministic computation

•
• •
• • •

...

•
• •

• •
• •

...

•
• reject

accept

f(n)f(n)

non-deterministic computation

The running time of a non-deterministic Turing Machine which decides
a language is a function f : N→ N, where f(n) is the maximum number
of steps on any branch of the computation on any input of length n.

Non-deterministic vs Deterministic Turing Machines

Theorem

Every f(n) time non-deterministic Turing Machine NDTM has an
equivalent 2O(f(n)) time deterministic Turing Machine DTM .

Proof:

I Starting from NDTM , construct a 3-tapes DTM

tape 1: input (never changes)
tape 2: simulation
tape 3: address

I data on tape 3:
I each node of the computation

tree of NDTM has at most c
children: c ≤ Θ(|K|)

I address of a node in
{1, 2, . . . , c}∗

1

11 12

111 112 122

1221 1222

12211

Non-deterministic vs Deterministic Turing Machines

Theorem

Every f(n) time non-deterministic Turing Machine NDTM has an
equivalent 2O(f(n)) time deterministic Turing Machine DTM .

Proof:

I Starting from NDTM , construct a 3-tapes DTM

tape 1: input (never changes)
tape 2: simulation
tape 3: address

I data on tape 3:
I each node of the computation

tree of NDTM has at most c
children: c ≤ Θ(|K|)

I address of a node in
{1, 2, . . . , c}∗

1

11 12

111 112 122

1221 1222

12211

Non-deterministic vs Deterministic Turing Machines

Simulation:

1. Initialize tape 1 with the input w and tapes 2 & 3 to be empty.

2. Copy the contents of tape 1 to tape 2.

3. Simulate NDTM on tape 2 using the sequence of computations
described in tape 3. If an accepting configuration is yielded, then
accept.

4. Update the string in tape 3 with the lexicographic next string and go
to 2.

Running time

I recall: c ≤ Θ(|K|)
I how many nodes in the computation tree?

1 + c+ c2 + . . .+ cf(n) = O(cf(n))

I time to simulate each node: O
(
f(n)

)
I in total O(f(n) · cf(n)) = cO(f(n))

I transformation to single tape:
(
cO(f(n))

)2
= cO(f(n))

Non-deterministic vs Deterministic Turing Machines

Simulation:

1. Initialize tape 1 with the input w and tapes 2 & 3 to be empty.

2. Copy the contents of tape 1 to tape 2.

3. Simulate NDTM on tape 2 using the sequence of computations
described in tape 3. If an accepting configuration is yielded, then
accept.

4. Update the string in tape 3 with the lexicographic next string and go
to 2.

Running time

I recall: c ≤ Θ(|K|)
I how many nodes in the computation tree?

1 + c+ c2 + . . .+ cf(n) = O(cf(n))

I time to simulate each node: O
(
f(n)

)
I in total O(f(n) · cf(n)) = cO(f(n))

I transformation to single tape:
(
cO(f(n))

)2
= cO(f(n))

Non-deterministic vs Deterministic Turing Machines

Simulation:

1. Initialize tape 1 with the input w and tapes 2 & 3 to be empty.

2. Copy the contents of tape 1 to tape 2.

3. Simulate NDTM on tape 2 using the sequence of computations
described in tape 3. If an accepting configuration is yielded, then
accept.

4. Update the string in tape 3 with the lexicographic next string and go
to 2.

Running time

I recall: c ≤ Θ(|K|)
I how many nodes in the computation tree?

1 + c+ c2 + . . .+ cf(n) = O(cf(n))

I time to simulate each node: O
(
f(n)

)

I in total O(f(n) · cf(n)) = cO(f(n))

I transformation to single tape:
(
cO(f(n))

)2
= cO(f(n))

Non-deterministic vs Deterministic Turing Machines

Simulation:

1. Initialize tape 1 with the input w and tapes 2 & 3 to be empty.

2. Copy the contents of tape 1 to tape 2.

3. Simulate NDTM on tape 2 using the sequence of computations
described in tape 3. If an accepting configuration is yielded, then
accept.

4. Update the string in tape 3 with the lexicographic next string and go
to 2.

Running time

I recall: c ≤ Θ(|K|)
I how many nodes in the computation tree?

1 + c+ c2 + . . .+ cf(n) = O(cf(n))

I time to simulate each node: O
(
f(n)

)
I in total O(f(n) · cf(n)) = cO(f(n))

I transformation to single tape:
(
cO(f(n))

)2
= cO(f(n))

Non-deterministic vs Deterministic Turing Machines

Simulation:

1. Initialize tape 1 with the input w and tapes 2 & 3 to be empty.

2. Copy the contents of tape 1 to tape 2.

3. Simulate NDTM on tape 2 using the sequence of computations
described in tape 3. If an accepting configuration is yielded, then
accept.

4. Update the string in tape 3 with the lexicographic next string and go
to 2.

Running time

I recall: c ≤ Θ(|K|)
I how many nodes in the computation tree?

1 + c+ c2 + . . .+ cf(n) = O(cf(n))

I time to simulate each node: O
(
f(n)

)
I in total O(f(n) · cf(n)) = cO(f(n))

I transformation to single tape:
(
cO(f(n))

)2
= cO(f(n))

Non-deterministic time complexity class

Let f : N→ N be a function. We define the non-deterministic time
complexity class

NTIME(f(n)) = {L | L is a language decided by a non-deterministic
Turing Machine in O(f(n)) time, where n is the
size of the input}

Example: COMPOSITES = {x | x = p · q, for some integers p, q > 1}

M = “On input x:

1. Non-deterministically generate two integers p, q ∈ [2,
√
x].

2. Compute the product p · q
3. If x = p · q then accept, else reject.”

I M decides COMPOSITES

I f(n) = O
(
n · log2 n ·2O(log∗

2 n)
)

(Fürer’s algorithm for multiplication)

Non-deterministic time complexity class

Let f : N→ N be a function. We define the non-deterministic time
complexity class

NTIME(f(n)) = {L | L is a language decided by a non-deterministic
Turing Machine in O(f(n)) time, where n is the
size of the input}

Example: COMPOSITES = {x | x = p · q, for some integers p, q > 1}

M = “On input x:

1. Non-deterministically generate two integers p, q ∈ [2,
√
x].

2. Compute the product p · q
3. If x = p · q then accept, else reject.”

I M decides COMPOSITES

I f(n) = O
(
n · log2 n ·2O(log∗

2 n)
)

(Fürer’s algorithm for multiplication)

Non-deterministic time complexity class

Let f : N→ N be a function. We define the non-deterministic time
complexity class

NTIME(f(n)) = {L | L is a language decided by a non-deterministic
Turing Machine in O(f(n)) time, where n is the
size of the input}

Example: COMPOSITES = {x | x = p · q, for some integers p, q > 1}

M = “On input x:

1. Non-deterministically generate two integers p, q ∈ [2,
√
x].

2. Compute the product p · q
3. If x = p · q then accept, else reject.”

I M decides COMPOSITES

I f(n) = O
(
n · log2 n ·2O(log∗

2 n)
)

(Fürer’s algorithm for multiplication)

Non-deterministic time complexity class

Let f : N→ N be a function. We define the non-deterministic time
complexity class

NTIME(f(n)) = {L | L is a language decided by a non-deterministic
Turing Machine in O(f(n)) time, where n is the
size of the input}

Example: COMPOSITES = {x | x = p · q, for some integers p, q > 1}

M = “On input x:

1. Non-deterministically generate two integers p, q ∈ [2,
√
x].

2. Compute the product p · q
3. If x = p · q then accept, else reject.”

I M decides COMPOSITES

I f(n) = O
(
n · log2 n ·2O(log∗

2 n)
)

(Fürer’s algorithm for multiplication)

Non-deterministic time complexity class

Let f : N→ N be a function. We define the non-deterministic time
complexity class

NTIME(f(n)) = {L | L is a language decided by a non-deterministic
Turing Machine in O(f(n)) time, where n is the
size of the input}

Example:
HPATH = {〈G, s, t〉 | G is a graph with a Hamiltonian path from s to t}

M = “On input 〈G, s, t〉:
1. Non-deterministically generate a permutation of the vertex set,
v1, v2, . . . , vn.

2. If v1 = s, vn = t and (vi, vi+1) ∈ E for each i = 1, 2, . . . n− 1, then
accept, else reject.”

I M decides HPATH
I f(n) = O

(
n2
)

⇒ HPATH ∈ NTIME(n2)

Non-deterministic time complexity class

Let f : N→ N be a function. We define the non-deterministic time
complexity class

NTIME(f(n)) = {L | L is a language decided by a non-deterministic
Turing Machine in O(f(n)) time, where n is the
size of the input}

Example:
HPATH = {〈G, s, t〉 | G is a graph with a Hamiltonian path from s to t}
M = “On input 〈G, s, t〉:

1. Non-deterministically generate a permutation of the vertex set,
v1, v2, . . . , vn.

2. If v1 = s, vn = t and (vi, vi+1) ∈ E for each i = 1, 2, . . . n− 1, then
accept, else reject.”

I M decides HPATH
I f(n) = O

(
n2
)

⇒ HPATH ∈ NTIME(n2)

Non-deterministic time complexity class

Let f : N→ N be a function. We define the non-deterministic time
complexity class

NTIME(f(n)) = {L | L is a language decided by a non-deterministic
Turing Machine in O(f(n)) time, where n is the
size of the input}

Example:
HPATH = {〈G, s, t〉 | G is a graph with a Hamiltonian path from s to t}
M = “On input 〈G, s, t〉:

1. Non-deterministically generate a permutation of the vertex set,
v1, v2, . . . , vn.

2. If v1 = s, vn = t and (vi, vi+1) ∈ E for each i = 1, 2, . . . n− 1, then
accept, else reject.”

I M decides HPATH
I f(n) = O

(
n2
)

⇒ HPATH ∈ NTIME(n2)

Certificates and Verifiers

I “non-deterministically generate” a string

I check if the generated string has a certain property of the language

I if this input is in the language, then at least one such string exists

I we call this string a certificate

I Examples of certificates

I COMPOSITES: 〈p, q〉 such x = p · q
I HPATH: 〈v1, v2, . . . , vn〉 such that s = v1 → v2 → . . .→ vn = t is

a Hamiltonian path from s to t

I A verifier for a language L is an algorithm V where

L = {w | V accepts 〈w, c〉 for each certificate c}

I A polynomial time verifier runs in polynomial time with respect to
the length of the input w

Certificates and Verifiers

I “non-deterministically generate” a string

I check if the generated string has a certain property of the language

I if this input is in the language, then at least one such string exists

I we call this string a certificate

I Examples of certificates

I COMPOSITES: 〈p, q〉 such x = p · q
I HPATH: 〈v1, v2, . . . , vn〉 such that s = v1 → v2 → . . .→ vn = t is

a Hamiltonian path from s to t

I A verifier for a language L is an algorithm V where

L = {w | V accepts 〈w, c〉 for each certificate c}

I A polynomial time verifier runs in polynomial time with respect to
the length of the input w

Certificates and Verifiers

I “non-deterministically generate” a string

I check if the generated string has a certain property of the language

I if this input is in the language, then at least one such string exists

I we call this string a certificate

I Examples of certificates

I COMPOSITES: 〈p, q〉 such x = p · q
I HPATH: 〈v1, v2, . . . , vn〉 such that s = v1 → v2 → . . .→ vn = t is

a Hamiltonian path from s to t

I A verifier for a language L is an algorithm V where

L = {w | V accepts 〈w, c〉 for each certificate c}

I A polynomial time verifier runs in polynomial time with respect to
the length of the input w

Certificates and Verifiers

I “non-deterministically generate” a string

I check if the generated string has a certain property of the language

I if this input is in the language, then at least one such string exists

I we call this string a certificate

I Examples of certificates

I COMPOSITES: 〈p, q〉 such x = p · q
I HPATH: 〈v1, v2, . . . , vn〉 such that s = v1 → v2 → . . .→ vn = t is

a Hamiltonian path from s to t

I A verifier for a language L is an algorithm V where

L = {w | V accepts 〈w, c〉 for each certificate c}

I A polynomial time verifier runs in polynomial time with respect to
the length of the input w

Equivalence of Verifiers and Non-deterministic TM

Theorem

A language L has a polynomial time verifier V if and only if there is a
polynomial time Non-deterministic Turing Machine NDTM which
decides it.

Proof: (⇒) Consider a polynomial time verifier V for L

NDTM =

“On input w of length n:

1. Non-deterministically generate a string c of length nk.

2. Run V on input 〈w, c〉.
3. If V accepts, then accept, else reject.”

Equivalence of Verifiers and Non-deterministic TM

Theorem

A language L has a polynomial time verifier V if and only if there is a
polynomial time Non-deterministic Turing Machine NDTM which
decides it.

Proof: (⇒) Consider a polynomial time verifier V for L

NDTM = “On input w of length n:

1. Non-deterministically generate a string c of length nk.

2. Run V on input 〈w, c〉.
3. If V accepts, then accept, else reject.”

Equivalence of Verifiers and Non-deterministic TM

Theorem

A language L has a polynomial time verifier V if and only if there is a
polynomial time Non-deterministic Turing Machine NDTM which
decides it.

Proof: (⇐) Consider a polynomial time Non-deterministic Turing
Machine NDTM that decides L

V =

“On input 〈w, c〉:
1. Simulate NDTM on input w using each symbol of c as the

non-deterministically choice in order to decide the next step.

2. If this branch of computation accepts, then accept, else reject.”

Equivalence of Verifiers and Non-deterministic TM

Theorem

A language L has a polynomial time verifier V if and only if there is a
polynomial time Non-deterministic Turing Machine NDTM which
decides it.

Proof: (⇐) Consider a polynomial time Non-deterministic Turing
Machine NDTM that decides L

V = “On input 〈w, c〉:
1. Simulate NDTM on input w using each symbol of c as the

non-deterministically choice in order to decide the next step.

2. If this branch of computation accepts, then accept, else reject.”

The class NP

A non-deterministic Turing Machine M = (K,Σ,Γ,∆, s,H) is called
polynomially bounded if there is a polynomial p and for any input w

there is no configuration C such that (s,tw) `p(|w|)M C.

A language is called non-deterministically polynomially decidable if
there is a polynomially bounded Turing Machine that decides it.

NP is the class of non-deterministic polynomially decidable languages.

NP =
⋃
k

NTIME(nk)

equivalently

NP is the class of languages that have a polynomial time verifier.

The class NP

A non-deterministic Turing Machine M = (K,Σ,Γ,∆, s,H) is called
polynomially bounded if there is a polynomial p and for any input w

there is no configuration C such that (s,tw) `p(|w|)M C.

A language is called non-deterministically polynomially decidable if
there is a polynomially bounded Turing Machine that decides it.

NP is the class of non-deterministic polynomially decidable languages.

NP =
⋃
k

NTIME(nk)

equivalently

NP is the class of languages that have a polynomial time verifier.

The class NP

A non-deterministic Turing Machine M = (K,Σ,Γ,∆, s,H) is called
polynomially bounded if there is a polynomial p and for any input w

there is no configuration C such that (s,tw) `p(|w|)M C.

A language is called non-deterministically polynomially decidable if
there is a polynomially bounded Turing Machine that decides it.

NP is the class of non-deterministic polynomially decidable languages.

NP =
⋃
k

NTIME(nk)

equivalently

NP is the class of languages that have a polynomial time verifier.

P versus NP

Be careful !!
NP means “non-deterministic polynomial” and not “non-polynomial”

NP

P

or P = NP

What do we know? NP ⊆ EXPTIME =
⋃
k

TIME
(
2n

k)

P versus NP

Be careful !!
NP means “non-deterministic polynomial” and not “non-polynomial”

NP

P

or P = NP

What do we know? NP ⊆ EXPTIME =
⋃
k

TIME
(
2n

k)

P versus NP

Be careful !!
NP means “non-deterministic polynomial” and not “non-polynomial”

NP

P

or P = NP

What do we know? NP ⊆ EXPTIME =
⋃
k

TIME
(
2n

k)

Reductions

Definition

A function f : Σ∗ → Σ∗ is called polynomial time computable if there
is a polynomially bounded Turing Machine that computes it.

A language A is polynomial time reducible to language B, denoted
A ≤P B, if there is a polynomial time computable function f : Σ∗ → Σ∗,
where for every input w, it holds that

w ∈ A⇐⇒ f(w) ∈ B

This function f is called a polynomial time reduction from A to B.

A B

• •

• •

f

f

Reductions

Definition

A function f : Σ∗ → Σ∗ is called polynomial time computable if there
is a polynomially bounded Turing Machine that computes it.

A language A is polynomial time reducible to language B, denoted
A ≤P B, if there is a polynomial time computable function f : Σ∗ → Σ∗,
where for every input w, it holds that

w ∈ A⇐⇒ f(w) ∈ B

This function f is called a polynomial time reduction from A to B.

A B

• •

• •

f

f

Reductions

Theorem

If A ≤P B and B ∈ P, then A ∈ P.

Proof:

I M : a polynomially bounded Turing Machine deciding B

I f : a polynomial time reduction from A to B

I Create a polynomially bounded Turing Machine N deciding A

N = “On input w:

1. Compute f(w).
2. Run M on f(w) and output whatever M outputs.”

Reductions

Theorem

If A ≤P B and B ∈ P, then A ∈ P.

Proof:

I M : a polynomially bounded Turing Machine deciding B

I f : a polynomial time reduction from A to B

I Create a polynomially bounded Turing Machine N deciding A

N = “On input w:

1. Compute f(w).
2. Run M on f(w) and output whatever M outputs.”

Reductions

Theorem

If A ≤P B and B ∈ P, then A ∈ P.

Proof:

I M : a polynomially bounded Turing Machine deciding B

I f : a polynomial time reduction from A to B

I Create a polynomially bounded Turing Machine N deciding A

N = “On input w:

1. Compute f(w).
2. Run M on f(w) and output whatever M outputs.”

Example

HPATH = {〈G, s, t〉 | G is a graph with a Hamiltonian path from s to t}

HCYCLE = {〈G〉 | G is a graph with a Hamiltonian cycle}

Show that HPATH is polynomial time reducible to HCYCLE.

Solution:

I input of HPATH: a graph G = (V,E) and two vertices s, t ∈ V
I create an instance of HCYCLE

I G′ = (V ′, E′) where V ′ = V ∪ {v0} and E′ = E ∪ {(v0, s), (v0, t)}

G

•

•

s

t

•v0

G′

I The reduction
(transformation) is of
polynomial time

We are not done!!!

Example

HPATH = {〈G, s, t〉 | G is a graph with a Hamiltonian path from s to t}

HCYCLE = {〈G〉 | G is a graph with a Hamiltonian cycle}

Show that HPATH is polynomial time reducible to HCYCLE.

Solution:

I input of HPATH: a graph G = (V,E) and two vertices s, t ∈ V
I create an instance of HCYCLE

I G′ = (V ′, E′) where V ′ = V ∪ {v0} and E′ = E ∪ {(v0, s), (v0, t)}

G

•

•

s

t

•v0

G′

I The reduction
(transformation) is of
polynomial time

We are not done!!!

Example

HPATH = {〈G, s, t〉 | G is a graph with a Hamiltonian path from s to t}

HCYCLE = {〈G〉 | G is a graph with a Hamiltonian cycle}

Show that HPATH is polynomial time reducible to HCYCLE.

Solution:

I input of HPATH: a graph G = (V,E) and two vertices s, t ∈ V
I create an instance of HCYCLE

I G′ = (V ′, E′) where V ′ = V ∪ {v0} and E′ = E ∪ {(v0, s), (v0, t)}

G

•

•

s

t

•v0

G′

I The reduction
(transformation) is of
polynomial time

We are not done!!!

Example

HPATH = {〈G, s, t〉 | G is a graph with a Hamiltonian path from s to t}

HCYCLE = {〈G〉 | G is a graph with a Hamiltonian cycle}

Show that HPATH is polynomial time reducible to HCYCLE.

Solution:

I input of HPATH: a graph G = (V,E) and two vertices s, t ∈ V
I create an instance of HCYCLE

I G′ = (V ′, E′) where V ′ = V ∪ {v0} and E′ = E ∪ {(v0, s), (v0, t)}

G

•

•

s

t

•v0

G′

I The reduction
(transformation) is of
polynomial time

We are not done!!!

Example

Solution (cont’d):

There is a Hamiltonian Path from s to t in G if and only if there is a
Hamiltonian Cycle in G′

(⇒)

I consider a Hamiltonian Path from s to t in G:
s→ v2 → . . .→ vn−1 → t

I then v0 → s→ v2 → . . .→ vn−1 → t→ v0 is a Hamiltonian Cycle
in G′

(⇐)

I consider a Hamiltonian Cycle in G′

I this cycle should pass from v0
I there are only two edges incident to v0: (s, v0) and (t, v0)

I both (s, v0) and (t, v0) should be part of the Hamiltonian Cycle

I Hamiltonian Cycle in G′: t→ v0 → s→ . . .→ t

I there is a Hamiltonian Path from s to t in G

Example

Solution (cont’d):

There is a Hamiltonian Path from s to t in G if and only if there is a
Hamiltonian Cycle in G′

(⇒)

I consider a Hamiltonian Path from s to t in G:
s→ v2 → . . .→ vn−1 → t

I then v0 → s→ v2 → . . .→ vn−1 → t→ v0 is a Hamiltonian Cycle
in G′

(⇐)

I consider a Hamiltonian Cycle in G′

I this cycle should pass from v0
I there are only two edges incident to v0: (s, v0) and (t, v0)

I both (s, v0) and (t, v0) should be part of the Hamiltonian Cycle

I Hamiltonian Cycle in G′: t→ v0 → s→ . . .→ t

I there is a Hamiltonian Path from s to t in G

Example

Solution (cont’d):

There is a Hamiltonian Path from s to t in G if and only if there is a
Hamiltonian Cycle in G′

(⇒)

I consider a Hamiltonian Path from s to t in G:
s→ v2 → . . .→ vn−1 → t

I then v0 → s→ v2 → . . .→ vn−1 → t→ v0 is a Hamiltonian Cycle
in G′

(⇐)

I consider a Hamiltonian Cycle in G′

I this cycle should pass from v0
I there are only two edges incident to v0: (s, v0) and (t, v0)

I both (s, v0) and (t, v0) should be part of the Hamiltonian Cycle

I Hamiltonian Cycle in G′: t→ v0 → s→ . . .→ t

I there is a Hamiltonian Path from s to t in G

Example

Solution (cont’d):

There is a Hamiltonian Path from s to t in G if and only if there is a
Hamiltonian Cycle in G′

(⇒)

I consider a Hamiltonian Path from s to t in G:
s→ v2 → . . .→ vn−1 → t

I then v0 → s→ v2 → . . .→ vn−1 → t→ v0 is a Hamiltonian Cycle
in G′

(⇐)

I consider a Hamiltonian Cycle in G′

I this cycle should pass from v0
I there are only two edges incident to v0: (s, v0) and (t, v0)

I both (s, v0) and (t, v0) should be part of the Hamiltonian Cycle

I Hamiltonian Cycle in G′: t→ v0 → s→ . . .→ t

I there is a Hamiltonian Path from s to t in G

Example

Solution (cont’d):

There is a Hamiltonian Path from s to t in G if and only if there is a
Hamiltonian Cycle in G′

(⇒)

I consider a Hamiltonian Path from s to t in G:
s→ v2 → . . .→ vn−1 → t

I then v0 → s→ v2 → . . .→ vn−1 → t→ v0 is a Hamiltonian Cycle
in G′

(⇐)

I consider a Hamiltonian Cycle in G′

I this cycle should pass from v0

I there are only two edges incident to v0: (s, v0) and (t, v0)

I both (s, v0) and (t, v0) should be part of the Hamiltonian Cycle

I Hamiltonian Cycle in G′: t→ v0 → s→ . . .→ t

I there is a Hamiltonian Path from s to t in G

Example

Solution (cont’d):

There is a Hamiltonian Path from s to t in G if and only if there is a
Hamiltonian Cycle in G′

(⇒)

I consider a Hamiltonian Path from s to t in G:
s→ v2 → . . .→ vn−1 → t

I then v0 → s→ v2 → . . .→ vn−1 → t→ v0 is a Hamiltonian Cycle
in G′

(⇐)

I consider a Hamiltonian Cycle in G′

I this cycle should pass from v0
I there are only two edges incident to v0: (s, v0) and (t, v0)

I both (s, v0) and (t, v0) should be part of the Hamiltonian Cycle

I Hamiltonian Cycle in G′: t→ v0 → s→ . . .→ t

I there is a Hamiltonian Path from s to t in G

Example

Solution (cont’d):

There is a Hamiltonian Path from s to t in G if and only if there is a
Hamiltonian Cycle in G′

(⇒)

I consider a Hamiltonian Path from s to t in G:
s→ v2 → . . .→ vn−1 → t

I then v0 → s→ v2 → . . .→ vn−1 → t→ v0 is a Hamiltonian Cycle
in G′

(⇐)

I consider a Hamiltonian Cycle in G′

I this cycle should pass from v0
I there are only two edges incident to v0: (s, v0) and (t, v0)

I both (s, v0) and (t, v0) should be part of the Hamiltonian Cycle

I Hamiltonian Cycle in G′: t→ v0 → s→ . . .→ t

I there is a Hamiltonian Path from s to t in G

Example

Solution (cont’d):

There is a Hamiltonian Path from s to t in G if and only if there is a
Hamiltonian Cycle in G′

(⇒)

I consider a Hamiltonian Path from s to t in G:
s→ v2 → . . .→ vn−1 → t

I then v0 → s→ v2 → . . .→ vn−1 → t→ v0 is a Hamiltonian Cycle
in G′

(⇐)

I consider a Hamiltonian Cycle in G′

I this cycle should pass from v0
I there are only two edges incident to v0: (s, v0) and (t, v0)

I both (s, v0) and (t, v0) should be part of the Hamiltonian Cycle

I Hamiltonian Cycle in G′: t→ v0 → s→ . . .→ t

I there is a Hamiltonian Path from s to t in G

Example

Solution (cont’d):

There is a Hamiltonian Path from s to t in G if and only if there is a
Hamiltonian Cycle in G′

(⇒)

I consider a Hamiltonian Path from s to t in G:
s→ v2 → . . .→ vn−1 → t

I then v0 → s→ v2 → . . .→ vn−1 → t→ v0 is a Hamiltonian Cycle
in G′

(⇐)

I consider a Hamiltonian Cycle in G′

I this cycle should pass from v0
I there are only two edges incident to v0: (s, v0) and (t, v0)

I both (s, v0) and (t, v0) should be part of the Hamiltonian Cycle

I Hamiltonian Cycle in G′: t→ v0 → s→ . . .→ t

I there is a Hamiltonian Path from s to t in G

Steps of a reduction

Reduction from A to B

1. transform an instance IA of A to an instance IB of B

2. show that the reduction is of polynomial size

3. prove that:
“there is a solution for the problem A on the instance IA

if and only if
there is a solution for the problem B on the instance IB”

Comments

I usually the one direction is trivial (due to the transformation)

I |IB| is polynomially bounded by |IA|

Steps of a reduction

Reduction from A to B

1. transform an instance IA of A to an instance IB of B

2. show that the reduction is of polynomial size

3. prove that:
“there is a solution for the problem A on the instance IA

if and only if
there is a solution for the problem B on the instance IB”

Comments

I usually the one direction is trivial (due to the transformation)

I |IB| is polynomially bounded by |IA|

List of problems

DIRHCYCLE = {〈G〉 | G is a directed graph with a Hamiltonian cycle}

CLIQUE = {〈G, k〉 | G is a graph with a k-clique}

VERTEX-COVER = {〈G, k〉 | G is a graph with a set A ⊆ V such
that |A| = k and every e ∈ E is incident to a vertex in A}

INDEPENDENT-SET = {〈G, k〉 | G is a graph with a set A ⊆ V
such that |A| = k and there is no edge between any pair of vertices in A}

LONGEST-PATH = {〈G, s, t, k〉 | G is a graph with a path from s to
t of length at least k}

Exercises

I Show that HCYCLE is polynomial time reducible to HPATH.

