Fundamental Computer Science

Denis Trystram MoSIG1 – University Grenoble-Alpes

February 10, 2020

Summary of previous lecture

Turing Machines

- universal computational model
- ▶ all variants of the model are equivalent w.r.t. *decidability*

Complement

- Non-deterministic Turing Machines
 - decide the same languages as the deterministic
 - ... but not using the same number of steps

- Reduction
- Goal: to classify the problems in complexity classes
 - ► time complexity: number of steps w.r.t. the size of the input
 - space complexity

- Reduction
- Goal: to classify the problems in complexity classes
 - ► time complexity: number of steps w.r.t. the size of the input
 - space complexity

Focus on *decidable* languages (*solvable* problems)

Example: $L = \{0^k 1^k \mid k \ge 0\}$

 $M_1 =$ "On input w:

- 1. Scan the tape and *reject* if a 0 is found on the right of a 1.
- 2. Repeatedly scan the tape deleting each time a single 0 and a single 1.
- 3. If no 0's and no 1's remain in the tape then accept, else reject."

Example: $L = \{0^k 1^k \mid k \ge 0\} \in \text{TIME}(n^2)$

 $M_1 =$ "On input w:

- 1. Scan the tape and *reject* if a 0 is found on the right of a 1.
- 2. Repeatedly scan the tape deleting each time a single 0 and a single 1.
- 3. If no 0's and no 1's remain in the tape then accept, else reject."

Example: $L = \{0^k 1^k \mid k \ge 0\}$

 $M_2 =$ "On input w:

- 1. Scan the tape and *reject* if a 0 is found on the right of a 1.
- 2. Repeat:

 $2.1\,$ scan the tape deleting every second 0 and then every second 1.

3. If no 0's and no 1's remain in the tape then accept, else reject."

Example: $L = \{0^k 1^k \mid k \ge 0\} \in \text{TIME}(n \log_2 n)$

 $M_2 =$ "On input w:

- 1. Scan the tape and *reject* if a 0 is found on the right of a 1.
- 2. Repeat:

 $2.1\,$ scan the tape deleting every second 0 and then every second 1.

3. If no 0's and no 1's remain in the tape then accept, else reject."

The class P

A Turing Machine $M = (K, \Sigma, \Gamma, \delta, s, H)$ is called **polynomially bounded** if there is a polynomial p and for any input w there is no configuration C such that $(s, \underline{\sqcup}w) \vdash_{M}^{p(|w|)} C$.

A language is called **polynomially decidable** if there is a polynomially bounded Turing Machine that *decides* it.

The class P

A Turing Machine $M = (K, \Sigma, \Gamma, \delta, s, H)$ is called **polynomially bounded** if there is a polynomial p and for any input w there is no configuration C such that $(s, \underline{\sqcup}w) \vdash_{M}^{p(|w|)} C$.

A language is called **polynomially decidable** if there is a polynomially bounded Turing Machine that *decides* it.

 ${\rm P}$ is the class of *polynomially decidable* languages.

$$\mathbf{P} = \bigcup_k \mathrm{TIME}(n^k)$$

- Decision problem: a problem with a yes/no answer
- ► example

PATH: Given a graph G = (V, E) and two nodes $s, t \in V$, is there a path from s to t?

- Decision problem: a problem with a yes/no answer
- ▶ example PATH: Given a graph G = (V, E) and two nodes $s, t \in V$, is there a path from s to t?
- ► Is PATH a language?

- Decision problem: a problem with a yes/no answer
- ▶ example PATH: Given a graph G = (V, E) and two nodes $s, t \in V$, is there a path from s to t?
- ► Is PATH a language? No
- ▶ How to define the language corresponding to PATH?

- Decision problem: a problem with a yes/no answer
- ▶ example PATH: Given a graph G = (V, E) and two nodes $s, t \in V$, is there a path from s to t?
- ► Is PATH a language? No
- ► How to define the language corresponding to PATH? PATH = {⟨G, s, t⟩ | G is a graph that has a path from s to t}
 - $\blacktriangleright \ \langle G,s,t\rangle$ is the input
 - $|\langle G, s, t \rangle|$ is the size of the input

- Decision problem: a problem with a yes/no answer
- ▶ example PATH: Given a graph G = (V, E) and two nodes $s, t \in V$, is there a path from s to t?
- ► Is PATH a language? No
- ► How to define the language corresponding to PATH?
 PATH = {⟨G, s, t⟩ | G is a graph that has a path from s to t}
 - $\blacktriangleright \ \langle G,s,t\rangle$ is the input
 - $|\langle G, s, t \rangle|$ is the size of the input
- ▶ PATH \in P?

- Decision problem: a problem with a yes/no answer
- ▶ example PATH: Given a graph G = (V, E) and two nodes $s, t \in V$, is there a path from s to t?
- ► Is PATH a language? No
- ► How to define the language corresponding to PATH? PATH = {⟨G, s, t⟩ | G is a graph that has a path from s to t}
 - $\blacktriangleright \ \langle G, s, t \rangle$ is the input
 - $|\langle G, s, t \rangle|$ is the size of the input
- ▶ PATH \in P?
 - Yes (i.e., Breadth First Search in O(|V| + |E|))

Does the definition of the class P remains the same if we use multiple tapes?

- Does the definition of the class P remains the same if we use multiple tapes? YES
 - ► Recall: if a multiple tape Turing Machine *halts* on input w after t steps, then the corresponding single tape Turing Machine *halts* after O(t(|w| + t)) steps.

- Does the definition of the class P remains the same if we use multiple tapes? YES
 - ► Recall: if a multiple tape Turing Machine *halts* on input w after t steps, then the corresponding single tape Turing Machine *halts* after O(t(|w| + t)) steps.

Example: $L = \{0^k 1^k \mid k \ge 0\}$

- Does the definition of the class P remains the same if we use multiple tapes? YES
 - ► Recall: if a multiple tape Turing Machine *halts* on input w after t steps, then the corresponding single tape Turing Machine *halts* after O(t(|w| + t)) steps.

Example: $L = \{0^k 1^k \mid k \ge 0\}$

 $M_3 =$ "On input w:

- 1. Scan the tape and *reject* if a 0 is found on the right of a 1.
- 2. Copy the 0's in tape 2.
- Scan tapes 1 & 2 simultaneously and delete a single 0 from tape 2 and a single 1 from tape 1.
- 4. If no 0's and no 1's remain then accept, else reject."

- Does the definition of the class P remains the same if we use multiple tapes? YES
 - ► Recall: if a multiple tape Turing Machine *halts* on input w after t steps, then the corresponding single tape Turing Machine *halts* after O(t(|w| + t)) steps.

Example: $L = \{0^k 1^k \mid k \ge 0\}$

 $M_3 =$ "On input w:

- 1. Scan the tape and *reject* if a 0 is found on the right of a 1.
- 2. Copy the 0's in tape 2.
- Scan tapes 1 & 2 simultaneously and delete a single 0 from tape 2 and a single 1 from tape 1.
- 4. If no 0's and no 1's remain then accept, else reject."

▶ complexity:
$$O(n) \Rightarrow L \in TIME(n^2) \Rightarrow L \in P$$

Non-deterministic Turing Machines

deterministic computation

non-deterministic computation

Non-deterministic Turing Machines

The **running time** of a non-deterministic Turing Machine which *decides* a language is a function $f : \mathbb{N} \to \mathbb{N}$, where f(n) is the maximum number of steps on any branch of the computation on any input of length n.

Theorem

Every f(n) time non-deterministic Turing Machine NDTM has an equivalent $2^{O(f(n))}$ time deterministic Turing Machine DTM.

Proof:

• Starting from NDTM, construct a 3-tapes DTM

tape 1: input (never changes)

tape 2: simulation

tape 3: address

Theorem

Every f(n) time non-deterministic Turing Machine NDTM has an equivalent $2^{O(f(n))}$ time deterministic Turing Machine DTM.

Proof:

• Starting from NDTM, construct a 3-tapes DTM

tape 1: input (never changes) tape 2: simulation

tape 3: address

data on tape 3:

- each node of the computation tree of NDTM has at most cchildren: $c \leq \Theta(|K|)$
- ► address of a node in {1,2,...,c}*

- 1. Initialize tape 1 with the input w and tapes 2 & 3 to be empty.
- 2. Copy the contents of tape 1 to tape 2.
- 3. Simulate NDTM on tape 2 using the sequence of computations described in tape 3. If an accepting configuration is yielded, then *accept*.
- 4. Update the string in tape 3 with the lexicographic next string and go to 2.

- $\blacktriangleright \text{ recall: } c \leq \Theta(|K|)$
- how many nodes in the computation tree?

- 1. Initialize tape 1 with the input w and tapes 2 & 3 to be empty.
- 2. Copy the contents of tape 1 to tape 2.
- 3. Simulate NDTM on tape 2 using the sequence of computations described in tape 3. If an accepting configuration is yielded, then *accept*.
- 4. Update the string in tape 3 with the lexicographic next string and go to 2.

- $\blacktriangleright \text{ recall: } c \leq \Theta(|K|)$
- ▶ how many nodes in the computation tree? $1 + c + c^2 + \ldots + c^{f(n)} = O(c^{f(n)})$

- 1. Initialize tape 1 with the input w and tapes 2 & 3 to be empty.
- 2. Copy the contents of tape 1 to tape 2.
- 3. Simulate NDTM on tape 2 using the sequence of computations described in tape 3. If an accepting configuration is yielded, then *accept*.
- 4. Update the string in tape 3 with the lexicographic next string and go to 2.

- $\blacktriangleright \text{ recall: } c \leq \Theta(|K|)$
- ▶ how many nodes in the computation tree? $1 + c + c^2 + \ldots + c^{f(n)} = O(c^{f(n)})$
- time to simulate each node: O(f(n))

- 1. Initialize tape 1 with the input w and tapes 2 & 3 to be empty.
- 2. Copy the contents of tape 1 to tape 2.
- 3. Simulate NDTM on tape 2 using the sequence of computations described in tape 3. If an accepting configuration is yielded, then *accept*.
- 4. Update the string in tape 3 with the lexicographic next string and go to 2.

- $\blacktriangleright \text{ recall: } c \leq \Theta(|K|)$
- ▶ how many nodes in the computation tree? $1 + c + c^2 + \ldots + c^{f(n)} = O(c^{f(n)})$
- time to simulate each node: O(f(n))
- \blacktriangleright in total $O(f(n) \cdot c^{f(n)}) = c^{O(f(n))}$

- 1. Initialize tape 1 with the input w and tapes 2 & 3 to be empty.
- 2. Copy the contents of tape 1 to tape 2.
- 3. Simulate NDTM on tape 2 using the sequence of computations described in tape 3. If an accepting configuration is yielded, then *accept*.
- 4. Update the string in tape 3 with the lexicographic next string and go to 2.

- $\blacktriangleright \text{ recall: } c \leq \Theta(|K|)$
- ▶ how many nodes in the computation tree? $1 + c + c^2 + \ldots + c^{f(n)} = O(c^{f(n)})$
- time to simulate each node: O(f(n))
- \blacktriangleright in total $O(f(n) \cdot c^{f(n)}) = c^{O(f(n))}$
- ▶ transformation to single tape: $(c^{O(f(n))})^2 = c^{O(f(n))}$

Let $f:\mathbb{N}\to\mathbb{N}$ be a function. We define the non-deterministic time complexity class

$$\begin{split} \text{NTIME}(f(n)) &= \{L \mid L \text{ is a language } \textit{decided } \text{by a non-deterministic} \\ \text{Turing Machine in } O(f(n)) \text{ time, where } n \text{ is the} \\ \text{size of the input} \end{split}$$

Let $f:\mathbb{N}\to\mathbb{N}$ be a function. We define the non-deterministic time complexity class

$$\begin{split} \text{NTIME}(f(n)) &= \{L \mid L \text{ is a language } \textit{decided } \text{by a non-deterministic} \\ \text{Turing Machine in } O(f(n)) \text{ time, where } n \text{ is the} \\ \text{size of the input} \} \end{split}$$

Example: COMPOSITES = $\{x \mid x = p \cdot q, \text{ for some integers } p, q > 1\}$

Let $f:\mathbb{N}\to\mathbb{N}$ be a function. We define the non-deterministic time complexity class

$$\begin{split} \text{NTIME}(f(n)) &= \{L \mid L \text{ is a language } \textit{decided } \text{by a non-deterministic} \\ \text{Turing Machine in } O(f(n)) \text{ time, where } n \text{ is the} \\ \text{size of the input} \} \end{split}$$

Example: COMPOSITES = $\{x \mid x = p \cdot q, \text{ for some integers } p, q > 1\}$

M = "On input x:

- 1. Non-deterministically generate two integers $p, q \in [2, \sqrt{x}]$.
- 2. Compute the product $p \cdot q$
- 3. If $x = p \cdot q$ then *accept*, else *reject*."
Let $f:\mathbb{N}\to\mathbb{N}$ be a function. We define the non-deterministic time complexity class

$$\begin{split} \text{NTIME}(f(n)) &= \{L \mid L \text{ is a language } \textit{decided } \text{by a non-deterministic} \\ \text{Turing Machine in } O(f(n)) \text{ time, where } n \text{ is the} \\ \text{size of the input} \} \end{split}$$

Example: COMPOSITES = $\{x \mid x = p \cdot q, \text{ for some integers } p, q > 1\}$

M = "On input x:

- 1. Non-deterministically generate two integers $p, q \in [2, \sqrt{x}]$.
- 2. Compute the product $p\cdot q$
- 3. If $x = p \cdot q$ then *accept*, else *reject*."
- ▶ M decides COMPOSITES
- ► $f(n) = O(n \cdot \log_2 n \cdot 2^{O(\log_2^* n)})$ (Fürer's algorithm for multiplication)

Non-deterministic time complexity class

Let $f:\mathbb{N}\to\mathbb{N}$ be a function. We define the non-deterministic time complexity class

$$\begin{split} \text{NTIME}(f(n)) &= \{L \mid L \text{ is a language } \textit{decided } \text{by a non-deterministic} \\ \text{Turing Machine in } O(f(n)) \text{ time, where } n \text{ is the} \\ \text{size of the input} \} \end{split}$$

Example: HPATH = { $\langle G, s, t \rangle \mid G$ is a graph with a Hamiltonian path from s to t} Let $f:\mathbb{N}\to\mathbb{N}$ be a function. We define the non-deterministic time complexity class

$$\begin{split} \text{NTIME}(f(n)) &= \{L \mid L \text{ is a language } \textit{decided } \text{by a non-deterministic} \\ \text{Turing Machine in } O(f(n)) \text{ time, where } n \text{ is the} \\ \text{size of the input} \} \end{split}$$

Example:

 $\mathrm{HPATH} = \{ \langle G, s, t \rangle \mid G \text{ is a graph with a Hamiltonian path from } s \text{ to } t \}$

- M = "On input $\langle G, s, t \rangle$:
 - 1. Non-deterministically generate a permutation of the vertex set, v_1, v_2, \ldots, v_n .
 - 2. If $v_1 = s$, $v_n = t$ and $(v_i, v_{i+1}) \in E$ for each i = 1, 2, ..., n-1, then *accept*, else *reject*."

Let $f:\mathbb{N}\to\mathbb{N}$ be a function. We define the non-deterministic time complexity class

$$\begin{split} \text{NTIME}(f(n)) &= \{L \mid L \text{ is a language } \textit{decided } \text{by a non-deterministic} \\ \text{Turing Machine in } O(f(n)) \text{ time, where } n \text{ is the} \\ \text{size of the input} \} \end{split}$$

Example:

 $\mathrm{HPATH} = \{ \langle G, s, t \rangle \mid G \text{ is a graph with a Hamiltonian path from } s \text{ to } t \}$

- M = "On input $\langle G, s, t \rangle$:
 - 1. Non-deterministically generate a permutation of the vertex set, v_1, v_2, \ldots, v_n .
 - 2. If $v_1 = s$, $v_n = t$ and $(v_i, v_{i+1}) \in E$ for each i = 1, 2, ..., n-1, then *accept*, else *reject*."
 - ► *M* decides HPATH

► $f(n) = O(n^2)$ \Rightarrow HPATH \in NTIME (n^2)

- "non-deterministically generate" a string
- \blacktriangleright check if the generated string has a certain property of the language
- ► if this input is in the language, then at least one such string exists
- we call this string a **certificate**

- "non-deterministically generate" a string
- check if the generated string has a certain property of the language
- ▶ if this input is in the language, then at least one such string exists
- we call this string a certificate
- Examples of certificates
 - COMPOSITES: $\langle p, q \rangle$ such $x = p \cdot q$
 - ▶ HPATH: $\langle v_1, v_2, \dots, v_n \rangle$ such that $s = v_1 \rightarrow v_2 \rightarrow \dots \rightarrow v_n = t$ is a Hamiltonian path from s to t

- "non-deterministically generate" a string
- check if the generated string has a certain property of the language
- ▶ if this input is in the language, then at least one such string exists
- we call this string a certificate
- Examples of certificates
 - COMPOSITES: $\langle p, q \rangle$ such $x = p \cdot q$
 - ▶ HPATH: $\langle v_1, v_2, \dots, v_n \rangle$ such that $s = v_1 \rightarrow v_2 \rightarrow \dots \rightarrow v_n = t$ is a Hamiltonian path from s to t
- A verifier for a language L is an algorithm \mathcal{V} where

 $L = \{ w \mid \mathcal{V} \text{ accepts } \langle w, c \rangle \text{ for each certificate } c \}$

- "non-deterministically generate" a string
- check if the generated string has a certain property of the language
- ▶ if this input is in the language, then at least one such string exists
- we call this string a certificate
- Examples of certificates
 - COMPOSITES: $\langle p, q \rangle$ such $x = p \cdot q$
 - ▶ HPATH: $\langle v_1, v_2, \dots, v_n \rangle$ such that $s = v_1 \rightarrow v_2 \rightarrow \dots \rightarrow v_n = t$ is a Hamiltonian path from s to t
- A verifier for a language L is an algorithm \mathcal{V} where

 $L = \{ w \mid \mathcal{V} \text{ accepts } \langle w, c \rangle \text{ for each certificate } c \}$

► A **polynomial time verifier** runs in polynomial time with respect to the length of the input *w*

Equivalence of Verifiers and Non-deterministic TM

Theorem

A language L has a polynomial time verifier \mathcal{V} if and only if there is a polynomial time Non-deterministic Turing Machine NDTM which decides it.

Proof: (\Rightarrow) Consider a polynomial time verifier \mathcal{V} for LNDTM =

Theorem

A language L has a polynomial time verifier \mathcal{V} if and only if there is a polynomial time Non-deterministic Turing Machine NDTM which decides it.

Proof: (\Rightarrow) Consider a polynomial time verifier \mathcal{V} for L

NDTM = "On input w of length n:

- 1. Non-deterministically generate a string c of length n^k .
- 2. Run \mathcal{V} on input $\langle w, c \rangle$.
- 3. If \mathcal{V} accepts, then *accept*, else *reject*."

Theorem

A language L has a polynomial time verifier \mathcal{V} if and only if there is a polynomial time Non-deterministic Turing Machine NDTM which decides it.

Proof: (\Leftarrow) Consider a polynomial time Non-deterministic Turing Machine NDTM that decides L

 $\mathcal{V} =$

Theorem

A language L has a polynomial time verifier \mathcal{V} if and only if there is a polynomial time Non-deterministic Turing Machine NDTM which decides it.

Proof: (\Leftarrow) Consider a polynomial time Non-deterministic Turing Machine NDTM that decides L

- $\mathcal{V} =$ "On input $\langle w, c \rangle$:
 - 1. Simulate NDTM on input w using each symbol of c as the non-deterministically choice in order to decide the next step.
 - 2. If this branch of computation accepts, then accept, else reject."

A non-deterministic Turing Machine $M = (K, \Sigma, \Gamma, \Delta, s, H)$ is called **polynomially bounded** if there is a polynomial p and for any input wthere is no configuration C such that $(s, \underline{\sqcup}w) \vdash_{M}^{p(|w|)} C$.

A language is called **non-deterministically polynomially decidable** if there is a polynomially bounded Turing Machine that *decides* it.

A non-deterministic Turing Machine $M = (K, \Sigma, \Gamma, \Delta, s, H)$ is called **polynomially bounded** if there is a polynomial p and for any input wthere is no configuration C such that $(s, \underline{\sqcup}w) \vdash_{M}^{p(|w|)} C$.

A language is called **non-deterministically polynomially decidable** if there is a polynomially bounded Turing Machine that *decides* it.

NP is the class of *non-deterministic polynomially decidable* languages.

$$\mathrm{NP} = \bigcup_k \mathrm{NTIME}(n^k)$$

A non-deterministic Turing Machine $M = (K, \Sigma, \Gamma, \Delta, s, H)$ is called **polynomially bounded** if there is a polynomial p and for any input wthere is no configuration C such that $(s, \underline{\sqcup}w) \vdash_{M}^{p(|w|)} C$.

A language is called **non-deterministically polynomially decidable** if there is a polynomially bounded Turing Machine that *decides* it.

NP is the class of non-deterministic polynomially decidable languages.

$$\mathrm{NP} = \bigcup_k \mathrm{NTIME}(n^k)$$

equivalently

 NP is the class of languages that have a polynomial time verifier.

P versus NP

Be careful !!

 NP means "non-deterministic polynomial" and not "non-polynomial"

P versus NP

Be careful !!

 NP means "non-deterministic polynomial" and not "non-polynomial"

P versus NP

Be careful !!

 NP means "non-deterministic polynomial" and not "non-polynomial"

What do we know?

 $NP \subseteq EXPTIME = \bigcup_{k} TIME(2^{n^k})$

Definition

A function $f: \Sigma^* \to \Sigma^*$ is called **polynomial time computable** if there is a polynomially bounded Turing Machine that computes it.

Definition

A function $f: \Sigma^* \to \Sigma^*$ is called **polynomial time computable** if there is a polynomially bounded Turing Machine that computes it.

A language A is **polynomial time reducible** to language B, denoted $A \leq_{\mathbf{P}} B$, if there is a polynomial time computable function $f: \Sigma^* \to \Sigma^*$, where for every input w, it holds that

$$w \in A \iff f(w) \in B$$

This function f is called a **polynomial time reduction** from A to B.

Theorem

If $A \leq_{\mathrm{P}} B$ and $B \in \mathrm{P}$, then $A \in \mathrm{P}$.

Proof:

Theorem

If $A \leq_{\mathrm{P}} B$ and $B \in \mathrm{P}$, then $A \in \mathrm{P}$.

Proof:

- $\blacktriangleright~M$: a polynomially bounded Turing Machine deciding B
- f: a polynomial time reduction from A to B
- \blacktriangleright Create a polynomially bounded Turing Machine N deciding A

Theorem

If $A \leq_{\mathrm{P}} B$ and $B \in \mathrm{P}$, then $A \in \mathrm{P}$.

Proof:

- \blacktriangleright M: a polynomially bounded Turing Machine deciding B
- f: a polynomial time reduction from A to B
- \blacktriangleright Create a polynomially bounded Turing Machine N deciding A

N = "On input w:

- 1. Compute f(w).
- 2. Run M on $f(\boldsymbol{w})$ and output whatever M outputs."

$$\begin{split} \mathrm{HPATH} &= \{ \langle G, s, t \rangle \mid G \text{ is a graph with a Hamiltonian path from } s \text{ to } t \} \\ \mathrm{HCYCLE} &= \{ \langle G \rangle \mid G \text{ is a graph with a Hamiltonian cycle} \} \\ \text{Show that HPATH is polynomial time reducible to HCYCLE}. \end{split}$$

Solution:

$$\begin{split} \mathrm{HPATH} &= \{ \langle G, s, t \rangle \mid G \text{ is a graph with a Hamiltonian path from } s \text{ to } t \} \\ \mathrm{HCYCLE} &= \{ \langle G \rangle \mid G \text{ is a graph with a Hamiltonian cycle} \} \\ \text{Show that HPATH is polynomial time reducible to HCYCLE.} \end{split}$$

Solution:

- ▶ input of HPATH: a graph G = (V, E) and two vertices $s, t \in V$
- create an instance of HCYCLE
 - G' = (V', E') where $V' = V \cup \{v_0\}$ and $E' = E \cup \{(v_0, s), (v_0, t)\}$

$$\begin{split} \mathrm{HPATH} &= \{ \langle G, s, t \rangle \mid G \text{ is a graph with a Hamiltonian path from } s \text{ to } t \} \\ \mathrm{HCYCLE} &= \{ \langle G \rangle \mid G \text{ is a graph with a Hamiltonian cycle} \} \\ \text{Show that HPATH is polynomial time reducible to HCYCLE}. \end{split}$$

Solution:

- ▶ input of HPATH: a graph G = (V, E) and two vertices $s, t \in V$
- ▶ create an instance of HCYCLE
 - G' = (V', E') where $V' = V \cup \{v_0\}$ and $E' = E \cup \{(v_0, s), (v_0, t)\}$

 The reduction (transformation) is of polynomial time

$$\begin{split} \mathrm{HPATH} &= \{ \langle G, s, t \rangle \mid G \text{ is a graph with a Hamiltonian path from } s \text{ to } t \} \\ \mathrm{HCYCLE} &= \{ \langle G \rangle \mid G \text{ is a graph with a Hamiltonian cycle} \} \\ \text{Show that HPATH is polynomial time reducible to HCYCLE}. \end{split}$$

Solution:

- ▶ input of HPATH: a graph G = (V, E) and two vertices $s, t \in V$
- ▶ create an instance of HCYCLE
 - G' = (V', E') where $V' = V \cup \{v_0\}$ and $E' = E \cup \{(v_0, s), (v_0, t)\}$

 The reduction (transformation) is of polynomial time

We are not done!!!

Solution (cont'd):

There is a Hamiltonian Path from s to t in G if and only if there is a Hamiltonian Cycle in G^\prime

Solution (cont'd):

There is a Hamiltonian Path from s to t in G if and only if there is a Hamiltonian Cycle in G^\prime

 (\Rightarrow)

• consider a Hamiltonian Path from s to t in G:

 $s \to v_2 \to \ldots \to v_{n-1} \to t$

Solution (cont'd):

There is a Hamiltonian Path from s to t in G if and only if there is a Hamiltonian Cycle in G^\prime

 (\Rightarrow)

- ► consider a Hamiltonian Path from s to t in G: $s \to v_2 \to \ldots \to v_{n-1} \to t$
- ▶ then $v_0 \to s \to v_2 \to \ldots \to v_{n-1} \to t \to v_0$ is a Hamiltonian Cycle in G'

Solution (cont'd):

There is a Hamiltonian Path from s to t in G if and only if there is a Hamiltonian Cycle in G^\prime

 (\Rightarrow)

- ► consider a Hamiltonian Path from s to t in G: $s \to v_2 \to \ldots \to v_{n-1} \to t$
- ▶ then $v_0 \to s \to v_2 \to \ldots \to v_{n-1} \to t \to v_0$ is a Hamiltonian Cycle in G'

 (\Leftarrow)

• consider a Hamiltonian Cycle in G'

Solution (cont'd):

There is a Hamiltonian Path from s to t in G if and only if there is a Hamiltonian Cycle in G^\prime

 (\Rightarrow)

- ► consider a Hamiltonian Path from s to t in G: $s \rightarrow v_2 \rightarrow \ldots \rightarrow v_{n-1} \rightarrow t$
- ▶ then $v_0 \to s \to v_2 \to \ldots \to v_{n-1} \to t \to v_0$ is a Hamiltonian Cycle in G'

- consider a Hamiltonian Cycle in G'
- \blacktriangleright this cycle should pass from v_0

Solution (cont'd):

There is a Hamiltonian Path from s to t in G if and only if there is a Hamiltonian Cycle in G^\prime

 (\Rightarrow)

- ► consider a Hamiltonian Path from s to t in G: $s \to v_2 \to \ldots \to v_{n-1} \to t$
- ▶ then $v_0 \to s \to v_2 \to \ldots \to v_{n-1} \to t \to v_0$ is a Hamiltonian Cycle in G'

- \blacktriangleright consider a Hamiltonian Cycle in G'
- \blacktriangleright this cycle should pass from v_0
- ▶ there are only two edges incident to v_0 : (s, v_0) and (t, v_0)

Solution (cont'd):

There is a Hamiltonian Path from s to t in G if and only if there is a Hamiltonian Cycle in G^\prime

 (\Rightarrow)

- ► consider a Hamiltonian Path from s to t in G: $s \to v_2 \to \ldots \to v_{n-1} \to t$
- ▶ then $v_0 \to s \to v_2 \to \ldots \to v_{n-1} \to t \to v_0$ is a Hamiltonian Cycle in G'

- \blacktriangleright consider a Hamiltonian Cycle in G'
- \blacktriangleright this cycle should pass from v_0
- ▶ there are only two edges incident to v_0 : (s, v_0) and (t, v_0)
- ▶ both (s, v_0) and (t, v_0) should be part of the Hamiltonian Cycle

Solution (cont'd):

There is a Hamiltonian Path from s to t in G if and only if there is a Hamiltonian Cycle in G^\prime

 (\Rightarrow)

- ► consider a Hamiltonian Path from s to t in G: $s \to v_2 \to \ldots \to v_{n-1} \to t$
- ▶ then $v_0 \to s \to v_2 \to \ldots \to v_{n-1} \to t \to v_0$ is a Hamiltonian Cycle in G'

- \blacktriangleright consider a Hamiltonian Cycle in G'
- \blacktriangleright this cycle should pass from v_0
- ▶ there are only two edges incident to v_0 : (s, v_0) and (t, v_0)
- ▶ both (s, v_0) and (t, v_0) should be part of the Hamiltonian Cycle
- ▶ Hamiltonian Cycle in $G': t \to v_0 \to s \to \ldots \to t$

Solution (cont'd):

There is a Hamiltonian Path from s to t in G if and only if there is a Hamiltonian Cycle in G^\prime

 (\Rightarrow)

- ► consider a Hamiltonian Path from s to t in G: $s \to v_2 \to \ldots \to v_{n-1} \to t$
- ▶ then $v_0 \to s \to v_2 \to \ldots \to v_{n-1} \to t \to v_0$ is a Hamiltonian Cycle in G'

- \blacktriangleright consider a Hamiltonian Cycle in G'
- \blacktriangleright this cycle should pass from v_0
- \blacktriangleright there are only two edges incident to $v_0 : \ (s, v_0) \ {\rm and} \ (t, v_0)$
- \blacktriangleright both (s,v_0) and (t,v_0) should be part of the Hamiltonian Cycle
- ▶ Hamiltonian Cycle in $G': t \to v_0 \to s \to \ldots \to t$
- \blacktriangleright there is a Hamiltonian Path from s to t in G
Reduction from \boldsymbol{A} to \boldsymbol{B}

- 1. transform an instance $\mathit{I}_{\rm A}$ of A to an instance $\mathit{I}_{\rm B}$ of B
- 2. show that the reduction is of polynomial size
- 3. prove that:

"there is a solution for the problem ${\rm A}$ on the instance $I_{\rm A}$ if and only if

there is a solution for the problem ${\rm B}$ on the instance ${\it I}_{\rm B}{\rm ''}$

Reduction from \boldsymbol{A} to \boldsymbol{B}

- 1. transform an instance $\mathit{I}_{\rm A}$ of A to an instance $\mathit{I}_{\rm B}$ of B
- 2. show that the reduction is of polynomial size
- 3. prove that:

"there is a solution for the problem A on the instance $I_{\rm A}$ if and only if

there is a solution for the problem ${\rm B}$ on the instance $I_{\rm B}{''}$

Comments

- usually the one direction is trivial (due to the transformation)
- $\blacktriangleright~|I_{\rm B}|$ is polynomially bounded by $|I_{\rm A}|$

List of problems

DIRHCYCLE = { $\langle G \rangle \mid G$ is a directed graph with a Hamiltonian cycle}

 $CLIQUE = \{ \langle G, k \rangle \mid G \text{ is a graph with a } k\text{-clique} \}$

 $\begin{aligned} \text{VERTEX-COVER} &= \{ \langle G, k \rangle \mid G \text{ is a graph with a set } A \subseteq V \text{ such } \\ \text{that } |A| &= k \text{ and every } e \in E \text{ is incident to a vertex in } A \end{aligned} \end{aligned}$

INDEPENDENT-SET = { $\langle G, k \rangle | G$ is a graph with a set $A \subseteq V$ such that |A| = k and there is no edge between any pair of vertices in A}

LONGEST-PATH = { $\langle G, s, t, k \rangle | G$ is a graph with a path from s to t of length at least k}

▶ Show that HCYCLE is polynomial time reducible to HPATH.