Fundamental Computer Science

Denis Trystram
MoSIG1 - University Grenoble-Alpes

February 10, 2020

Summary of previous lecture

- Turing Machines
- universal computational model
- all variants of the model are equivalent w.r.t. decidability

Complement

- Non-deterministic Turing Machines
- decide the same languages as the deterministic
- ... but not using the same number of steps

Agenda

- Reduction
- Goal: to classify the problems in complexity classes
- time complexity: number of steps w.r.t. the size of the input
- space complexity

Agenda

- Reduction
- Goal: to classify the problems in complexity classes
- time complexity: number of steps w.r.t. the size of the input
- space complexity

Focus on decidable languages (solvable problems)

Time complexity class

Let $f: \mathbb{N} \rightarrow \mathbb{N}$ be a function. We define the time complexity class
$\operatorname{TIME}(f(n))=\{L \mid L$ is a language decided by a Turing Machine in $O(f(n))$ time, where n is the size of the input $\}$

Time complexity class

Let $f: \mathbb{N} \rightarrow \mathbb{N}$ be a function. We define the time complexity class
$\operatorname{TIME}(f(n))=\{L \mid L$ is a language decided by a Turing Machine in $O(f(n))$ time, where n is the size of the input $\}$

Example: $L=\left\{0^{k} 1^{k} \mid k \geq 0\right\}$
$M_{1}=$ "On input w :

1. Scan the tape and reject if a 0 is found on the right of a 1 .
2. Repeatedly scan the tape deleting each time a single 0 and a single 1.
3. If no 0 's and no 1 's remain in the tape then accept, else reject."

Time complexity class

Let $f: \mathbb{N} \rightarrow \mathbb{N}$ be a function. We define the time complexity class
$\operatorname{TIME}(f(n))=\{L \mid L$ is a language decided by a Turing Machine in $O(f(n))$ time, where n is the size of the input $\}$

Example: $L=\left\{0^{k} 1^{k} \mid k \geq 0\right\} \in \operatorname{TIME}\left(n^{2}\right)$
$M_{1}=$ "On input w :

1. Scan the tape and reject if a 0 is found on the right of a 1 .
2. Repeatedly scan the tape deleting each time a single 0 and a single 1.
3. If no 0 's and no 1 's remain in the tape then accept, else reject."

Time complexity class

Let $f: \mathbb{N} \rightarrow \mathbb{N}$ be a function. We define the time complexity class
$\operatorname{TIME}(f(n))=\{L \mid L$ is a language decided by a Turing Machine in $O(f(n))$ time, where n is the size of the input $\}$

Example: $L=\left\{0^{k} 1^{k} \mid k \geq 0\right\}$
$M_{2}=$ "On input $w:$

1. Scan the tape and reject if a 0 is found on the right of a 1 .
2. Repeat:
2.1 scan the tape deleting every second 0 and then every second 1.
3. If no 0 's and no 1 's remain in the tape then accept, else reject."

Time complexity class

Let $f: \mathbb{N} \rightarrow \mathbb{N}$ be a function. We define the time complexity class
$\operatorname{TIME}(f(n))=\{L \mid L$ is a language decided by a Turing Machine in $O(f(n))$ time, where n is the size of the input $\}$

Example: $L=\left\{0^{k} 1^{k} \mid k \geq 0\right\} \in \operatorname{TIME}\left(n \log _{2} n\right)$
$M_{2}=$ "On input $w:$

1. Scan the tape and reject if a 0 is found on the right of a 1 .
2. Repeat:
2.1 scan the tape deleting every second 0 and then every second 1.
3. If no 0 's and no 1 's remain in the tape then accept, else reject."

The class P

A Turing Machine $M=(K, \Sigma, \Gamma, \delta, s, H)$ is called polynomially bounded if there is a polynomial p and for any input w there is no configuration C such that $(s, \sqcup w) \vdash_{M}^{p(|w|)} C$.

A language is called polynomially decidable if there is a polynomially bounded Turing Machine that decides it.

The class P

A Turing Machine $M=(K, \Sigma, \Gamma, \delta, s, H)$ is called polynomially bounded if there is a polynomial p and for any input w there is no configuration C such that $(s, \sqcup w) \vdash_{M}^{p(|w|)} C$.

A language is called polynomially decidable if there is a polynomially bounded Turing Machine that decides it.

P is the class of polynomially decidable languages.

$$
\mathrm{P}=\bigcup_{k} \operatorname{TIME}\left(n^{k}\right)
$$

Recall: languages vs problems

- Decision problem: a problem with a yes/no answer
- example

PATH: Given a graph $G=(V, E)$ and two nodes $s, t \in V$, is there a path from s to t ?

Recall: languages vs problems

- Decision problem: a problem with a yes/no answer
- example

PATH: Given a graph $G=(V, E)$ and two nodes $s, t \in V$, is there a path from s to t ?

- Is PATH a language?

Recall: languages vs problems

- Decision problem: a problem with a yes/no answer
- example

PATH: Given a graph $G=(V, E)$ and two nodes $s, t \in V$, is there a path from s to t ?

- Is PATH a language? No
- How to define the language corresponding to PATH?

Recall: languages vs problems

- Decision problem: a problem with a yes/no answer
- example

PATH: Given a graph $G=(V, E)$ and two nodes $s, t \in V$, is there a path from s to t ?

- Is PATH a language? No
- How to define the language corresponding to PATH?

PATH $=\{\langle G, s, t\rangle \mid G$ is a graph that has a path from s to $t\}$

- $\langle G, s, t\rangle$ is the input
- $|\langle G, s, t\rangle|$ is the size of the input

Recall: languages vs problems

- Decision problem: a problem with a yes/no answer
- example

PATH: Given a graph $G=(V, E)$ and two nodes $s, t \in V$, is there a path from s to t ?

- Is PATH a language? No
- How to define the language corresponding to PATH?
$\mathrm{PATH}=\{\langle G, s, t\rangle \mid G$ is a graph that has a path from s to $t\}$
- $\langle G, s, t\rangle$ is the input
- $|\langle G, s, t\rangle|$ is the size of the input
- PATH \in P?

Recall: languages vs problems

- Decision problem: a problem with a yes/no answer
- example

PATH: Given a graph $G=(V, E)$ and two nodes $s, t \in V$, is there a path from s to t ?

- Is PATH a language? No
- How to define the language corresponding to PATH?
$\mathrm{PATH}=\{\langle G, s, t\rangle \mid G$ is a graph that has a path from s to $t\}$
- $\langle G, s, t\rangle$ is the input
- $|\langle G, s, t\rangle|$ is the size of the input
- PATH \in P?
- Yes (i.e., Breadth First Search in $O(|V|+|E|))$

Enhanced Turing Machine models

- Does the definition of the class P remains the same if we use multiple tapes?

Enhanced Turing Machine models

- Does the definition of the class P remains the same if we use multiple tapes? YES
- Recall: if a multiple tape Turing Machine halts on input w after t steps, then the corresponding single tape Turing Machine halts after $O(t(|w|+t))$ steps.

Enhanced Turing Machine models

- Does the definition of the class P remains the same if we use multiple tapes? YES
- Recall: if a multiple tape Turing Machine halts on input w after t steps, then the corresponding single tape Turing Machine halts after $O(t(|w|+t))$ steps.

Example: $L=\left\{0^{k} 1^{k} \mid k \geq 0\right\}$

Enhanced Turing Machine models

- Does the definition of the class P remains the same if we use multiple tapes? YES
- Recall: if a multiple tape Turing Machine halts on input w after t steps, then the corresponding single tape Turing Machine halts after $O(t(|w|+t))$ steps.

Example: $L=\left\{0^{k} 1^{k} \mid k \geq 0\right\}$
$M_{3}=$ "On input w :

1. Scan the tape and reject if a 0 is found on the right of a 1 .
2. Copy the 0 's in tape 2 .
3. Scan tapes $1 \& 2$ simultaneously and delete a single 0 from tape 2 and a single 1 from tape 1 .
4. If no 0 's and no 1 's remain then accept, else reject."

Enhanced Turing Machine models

- Does the definition of the class P remains the same if we use multiple tapes? YES
- Recall: if a multiple tape Turing Machine halts on input w after t steps, then the corresponding single tape Turing Machine halts after $O(t(|w|+t))$ steps.

Example: $L=\left\{0^{k} 1^{k} \mid k \geq 0\right\}$
$M_{3}=$ "On input w :

1. Scan the tape and reject if a 0 is found on the right of a 1 .
2. Copy the 0 's in tape 2 .
3. Scan tapes $1 \& 2$ simultaneously and delete a single 0 from tape 2 and a single 1 from tape 1 .
4. If no 0 's and no 1 's remain then accept, else reject."

- complexity: $O(n) \quad \Rightarrow \quad L \in \operatorname{TIME}\left(n^{2}\right) \quad \Rightarrow \quad L \in \mathrm{P}$

Extension to space complexity

Non-deterministic Turing Machines

deterministic computation

non-deterministic computation

Non-deterministic Turing Machines

deterministic computation

non-deterministic computation

The running time of a non-deterministic Turing Machine which decides a language is a function $f: \mathbb{N} \rightarrow \mathbb{N}$, where $f(n)$ is the maximum number of steps on any branch of the computation on any input of length n.

Non-deterministic vs Deterministic Turing Machines

Theorem

Every $f(n)$ time non-deterministic Turing Machine NDTM has an equivalent $2^{O(f(n))}$ time deterministic Turing Machine DTM.

Proof:

- Starting from NDTM, construct a 3-tapes $D T M$
tape 1: input (never changes)
tape 2: simulation
tape 3: address

Non-deterministic vs Deterministic Turing Machines

Theorem

Every $f(n)$ time non-deterministic Turing Machine NDTM has an equivalent $2^{O(f(n))}$ time deterministic Turing Machine DTM.

Proof:

- Starting from NDTM, construct a 3-tapes DTM
tape 1: input (never changes)
tape 2: simulation
tape 3: address
- data on tape 3:
- each node of the computation tree of $N D T M$ has at most c children: $c \leq \Theta(|K|)$
- address of a node in $\{1,2, \ldots, c\}^{*}$

Non-deterministic vs Deterministic Turing Machines

Simulation:

1. Initialize tape 1 with the input w and tapes $2 \& 3$ to be empty.
2. Copy the contents of tape 1 to tape 2 .
3. Simulate NDTM on tape 2 using the sequence of computations described in tape 3. If an accepting configuration is yielded, then accept.
4. Update the string in tape 3 with the lexicographic next string and go to 2 .

Running time

- recall: $c \leq \Theta(|K|)$
- how many nodes in the computation tree?

Non-deterministic vs Deterministic Turing Machines

Simulation:

1. Initialize tape 1 with the input w and tapes $2 \& 3$ to be empty.
2. Copy the contents of tape 1 to tape 2.
3. Simulate NDTM on tape 2 using the sequence of computations described in tape 3. If an accepting configuration is yielded, then accept.
4. Update the string in tape 3 with the lexicographic next string and go to 2 .

Running time

- recall: $c \leq \Theta(|K|)$
- how many nodes in the computation tree?

$$
1+c+c^{2}+\ldots+c^{f(n)}=O\left(c^{f(n)}\right)
$$

Non-deterministic vs Deterministic Turing Machines

Simulation:

1. Initialize tape 1 with the input w and tapes $2 \& 3$ to be empty.
2. Copy the contents of tape 1 to tape 2 .
3. Simulate NDTM on tape 2 using the sequence of computations described in tape 3. If an accepting configuration is yielded, then accept.
4. Update the string in tape 3 with the lexicographic next string and go to 2 .

Running time

- recall: $c \leq \Theta(|K|)$
- how many nodes in the computation tree?

$$
1+c+c^{2}+\ldots+c^{f(n)}=O\left(c^{f(n)}\right)
$$

- time to simulate each node: $O(f(n))$

Non-deterministic vs Deterministic Turing Machines

Simulation:

1. Initialize tape 1 with the input w and tapes $2 \& 3$ to be empty.
2. Copy the contents of tape 1 to tape 2 .
3. Simulate NDTM on tape 2 using the sequence of computations described in tape 3. If an accepting configuration is yielded, then accept.
4. Update the string in tape 3 with the lexicographic next string and go to 2 .

Running time

- recall: $c \leq \Theta(|K|)$
- how many nodes in the computation tree?

$$
1+c+c^{2}+\ldots+c^{f(n)}=O\left(c^{f(n)}\right)
$$

- time to simulate each node: $O(f(n))$
- in total $O\left(f(n) \cdot c^{f(n)}\right)=c^{O(f(n))}$

Non-deterministic vs Deterministic Turing Machines

Simulation:

1. Initialize tape 1 with the input w and tapes $2 \& 3$ to be empty.
2. Copy the contents of tape 1 to tape 2 .
3. Simulate NDTM on tape 2 using the sequence of computations described in tape 3. If an accepting configuration is yielded, then accept.
4. Update the string in tape 3 with the lexicographic next string and go to 2 .

Running time

- recall: $c \leq \Theta(|K|)$
- how many nodes in the computation tree?

$$
1+c+c^{2}+\ldots+c^{f(n)}=O\left(c^{f(n)}\right)
$$

- time to simulate each node: $O(f(n))$
- in total $O\left(f(n) \cdot c^{f(n)}\right)=c^{O(f(n))}$
- transformation to single tape: $\left(c^{O(f(n))}\right)^{2}=c^{O(f(n))}$

Non-deterministic time complexity class

Let $f: \mathbb{N} \rightarrow \mathbb{N}$ be a function. We define the non-deterministic time complexity class
$\operatorname{NTIME}(f(n))=\{L \mid L$ is a language decided by a non-deterministic Turing Machine in $O(f(n))$ time, where n is the size of the input $\}$

Non-deterministic time complexity class

Let $f: \mathbb{N} \rightarrow \mathbb{N}$ be a function. We define the non-deterministic time complexity class
$\operatorname{NTIME}(f(n))=\{L \mid L$ is a language decided by a non-deterministic Turing Machine in $O(f(n))$ time, where n is the size of the input $\}$

Example: COMPOSITES $=\{x \mid x=p \cdot q$, for some integers $p, q>1\}$

Non-deterministic time complexity class

Let $f: \mathbb{N} \rightarrow \mathbb{N}$ be a function. We define the non-deterministic time complexity class
$\operatorname{NTIME}(f(n))=\{L \mid L$ is a language decided by a non-deterministic Turing Machine in $O(f(n))$ time, where n is the size of the input $\}$

Example: COMPOSITES $=\{x \mid x=p \cdot q$, for some integers $p, q>1\}$ $M=$ "On input x :

1. Non-deterministically generate two integers $p, q \in[2, \sqrt{x}]$.
2. Compute the product $p \cdot q$
3. If $x=p \cdot q$ then accept, else reject."

Non-deterministic time complexity class

Let $f: \mathbb{N} \rightarrow \mathbb{N}$ be a function. We define the non-deterministic time complexity class
$\operatorname{NTIME}(f(n))=\{L \mid L$ is a language decided by a non-deterministic Turing Machine in $O(f(n))$ time, where n is the size of the input $\}$

Example: COMPOSITES $=\{x \mid x=p \cdot q$, for some integers $p, q>1\}$
$M=$ "On input x :

1. Non-deterministically generate two integers $p, q \in[2, \sqrt{x}]$.
2. Compute the product $p \cdot q$
3. If $x=p \cdot q$ then accept, else reject."

- M decides COMPOSITES
- $f(n)=O\left(n \cdot \log _{2} n \cdot 2^{O\left(\log _{2}^{*} n\right)}\right)$ (Fürer's algorithm for multiplication)

Non-deterministic time complexity class

Let $f: \mathbb{N} \rightarrow \mathbb{N}$ be a function. We define the non-deterministic time complexity class
$\operatorname{NTIME}(f(n))=\{L \mid L$ is a language decided by a non-deterministic Turing Machine in $O(f(n))$ time, where n is the size of the input $\}$

Example:
HPATH $=\{\langle G, s, t\rangle \mid G$ is a graph with a Hamiltonian path from s to $t\}$

Non-deterministic time complexity class

Let $f: \mathbb{N} \rightarrow \mathbb{N}$ be a function. We define the non-deterministic time complexity class
$\operatorname{NTIME}(f(n))=\{L \mid L$ is a language decided by a non-deterministic Turing Machine in $O(f(n))$ time, where n is the size of the input $\}$

Example:

HPATH $=\{\langle G, s, t\rangle \mid G$ is a graph with a Hamiltonian path from s to $t\}$
$M=$ "On input $\langle G, s, t\rangle$:

1. Non-deterministically generate a permutation of the vertex set, $v_{1}, v_{2}, \ldots, v_{n}$.
2. If $v_{1}=s, v_{n}=t$ and $\left(v_{i}, v_{i+1}\right) \in E$ for each $i=1,2, \ldots n-1$, then accept, else reject."

Non-deterministic time complexity class

Let $f: \mathbb{N} \rightarrow \mathbb{N}$ be a function. We define the non-deterministic time complexity class
$\operatorname{NTIME}(f(n))=\{L \mid L$ is a language decided by a non-deterministic Turing Machine in $O(f(n))$ time, where n is the size of the input $\}$

Example:

HPATH $=\{\langle G, s, t\rangle \mid G$ is a graph with a Hamiltonian path from s to $t\}$
$M=$ "On input $\langle G, s, t\rangle$:

1. Non-deterministically generate a permutation of the vertex set, $v_{1}, v_{2}, \ldots, v_{n}$.
2. If $v_{1}=s, v_{n}=t$ and $\left(v_{i}, v_{i+1}\right) \in E$ for each $i=1,2, \ldots n-1$, then accept, else reject."

- M decides HPATH
- $f(n)=O\left(n^{2}\right) \quad \Rightarrow \quad \operatorname{HPATH} \in \operatorname{NTIME}\left(n^{2}\right)$

Certificates and Verifiers

- "non-deterministically generate" a string
- check if the generated string has a certain property of the language
- if this input is in the language, then at least one such string exists
- we call this string a certificate

Certificates and Verifiers

- "non-deterministically generate" a string
- check if the generated string has a certain property of the language
- if this input is in the language, then at least one such string exists
- we call this string a certificate
- Examples of certificates
- COMPOSITES: $\langle p, q\rangle$ such $x=p \cdot q$
- HPATH: $\left\langle v_{1}, v_{2}, \ldots, v_{n}\right\rangle$ such that $s=v_{1} \rightarrow v_{2} \rightarrow \ldots \rightarrow v_{n}=t$ is a Hamiltonian path from s to t

Certificates and Verifiers

- "non-deterministically generate" a string
- check if the generated string has a certain property of the language
- if this input is in the language, then at least one such string exists
- we call this string a certificate
- Examples of certificates
- COMPOSITES: $\langle p, q\rangle$ such $x=p \cdot q$
- HPATH: $\left\langle v_{1}, v_{2}, \ldots, v_{n}\right\rangle$ such that $s=v_{1} \rightarrow v_{2} \rightarrow \ldots \rightarrow v_{n}=t$ is a Hamiltonian path from s to t
- A verifier for a language L is an algorithm \mathcal{V} where

$$
L=\{w \mid \mathcal{V} \text { accepts }\langle w, c\rangle \text { for each certificate } c\}
$$

Certificates and Verifiers

- "non-deterministically generate" a string
- check if the generated string has a certain property of the language
- if this input is in the language, then at least one such string exists
- we call this string a certificate
- Examples of certificates
- COMPOSITES: $\langle p, q\rangle$ such $x=p \cdot q$
- HPATH: $\left\langle v_{1}, v_{2}, \ldots, v_{n}\right\rangle$ such that $s=v_{1} \rightarrow v_{2} \rightarrow \ldots \rightarrow v_{n}=t$ is a Hamiltonian path from s to t
- A verifier for a language L is an algorithm \mathcal{V} where

$$
L=\{w \mid \mathcal{V} \text { accepts }\langle w, c\rangle \text { for each certificate } c\}
$$

- A polynomial time verifier runs in polynomial time with respect to the length of the input w

Equivalence of Verifiers and Non-deterministic TM

Theorem

A language L has a polynomial time verifier \mathcal{V} if and only if there is a polynomial time Non-deterministic Turing Machine NDTM which decides it.

Proof: (\Rightarrow) Consider a polynomial time verifier \mathcal{V} for L
$N D T M=$

Equivalence of Verifiers and Non-deterministic TM

Theorem

A language L has a polynomial time verifier \mathcal{V} if and only if there is a polynomial time Non-deterministic Turing Machine NDTM which decides it.

Proof: (\Rightarrow) Consider a polynomial time verifier \mathcal{V} for L
$N D T M=$ "On input w of length n :

1. Non-deterministically generate a string c of length n^{k}.
2. Run \mathcal{V} on input $\langle w, c\rangle$.
3. If \mathcal{V} accepts, then accept, else reject."

Equivalence of Verifiers and Non-deterministic TM

Abstract

Theorem A language L has a polynomial time verifier \mathcal{V} if and only if there is a polynomial time Non-deterministic Turing Machine NDTM which decides it.

Proof: $\quad(\Leftarrow)$ Consider a polynomial time Non-deterministic Turing Machine NDTM that decides L
$\mathcal{V}=$

Equivalence of Verifiers and Non-deterministic TM

Theorem

A language L has a polynomial time verifier \mathcal{V} if and only if there is a polynomial time Non-deterministic Turing Machine NDTM which decides it.

Proof: $\quad(\Leftarrow)$ Consider a polynomial time Non-deterministic Turing Machine NDTM that decides L
$\mathcal{V}=$ "On input $\langle w, c\rangle$:

1. Simulate $N D T M$ on input w using each symbol of c as the non-deterministically choice in order to decide the next step.
2. If this branch of computation accepts, then accept, else reject."

The class NP

A non-deterministic Turing Machine $M=(K, \Sigma, \Gamma, \Delta, s, H)$ is called polynomially bounded if there is a polynomial p and for any input w there is no configuration C such that $(s, \sqcup w) \vdash_{M}^{p(|w|)} C$.

A language is called non-deterministically polynomially decidable if there is a polynomially bounded Turing Machine that decides it.

The class NP

A non-deterministic Turing Machine $M=(K, \Sigma, \Gamma, \Delta, s, H)$ is called polynomially bounded if there is a polynomial p and for any input w there is no configuration C such that $(s, \sqcup w) \vdash_{M}^{p(|w|)} C$.

A language is called non-deterministically polynomially decidable if there is a polynomially bounded Turing Machine that decides it.

NP is the class of non-deterministic polynomially decidable languages.

$$
\mathrm{NP}=\bigcup_{k} \operatorname{NTIME}\left(n^{k}\right)
$$

The class NP

A non-deterministic Turing Machine $M=(K, \Sigma, \Gamma, \Delta, s, H)$ is called polynomially bounded if there is a polynomial p and for any input w there is no configuration C such that $(s, \sqcup w) \vdash_{M}^{p(|w|)} C$.

A language is called non-deterministically polynomially decidable if there is a polynomially bounded Turing Machine that decides it.

NP is the class of non-deterministic polynomially decidable languages.

$$
\mathrm{NP}=\bigcup_{k} \operatorname{NTIME}\left(n^{k}\right)
$$

equivalently

NP is the class of languages that have a polynomial time verifier.

P versus NP

Be careful !!
NP means "non-deterministic polynomial" and not "non-polynomial"

P versus NP

Be careful !!

NP means "non-deterministic polynomial" and not "non-polynomial"

P versus NP

Be careful !!

NP means "non-deterministic polynomial" and not "non-polynomial"

What do we know?

$$
\mathrm{NP} \subseteq \operatorname{EXPTIME}=\bigcup_{k} \operatorname{TIME}\left(2^{n^{k}}\right)
$$

Reductions

Definition

A function $f: \Sigma^{*} \rightarrow \Sigma^{*}$ is called polynomial time computable if there is a polynomially bounded Turing Machine that computes it.

Reductions

Definition

A function $f: \Sigma^{*} \rightarrow \Sigma^{*}$ is called polynomial time computable if there is a polynomially bounded Turing Machine that computes it.

A language A is polynomial time reducible to language B, denoted $A \leq_{\mathrm{P}} B$, if there is a polynomial time computable function $f: \Sigma^{*} \rightarrow \Sigma^{*}$, where for every input w, it holds that

$$
w \in A \Longleftrightarrow f(w) \in B
$$

This function f is called a polynomial time reduction from A to B.

Reductions

Theorem
If $A \leq_{\mathrm{P}} B$ and $B \in \mathrm{P}$, then $A \in \mathrm{P}$.

Proof:

Reductions

Theorem

If $A \leq_{\mathrm{P}} B$ and $B \in \mathrm{P}$, then $A \in \mathrm{P}$.

Proof:

- M: a polynomially bounded Turing Machine deciding B
- f : a polynomial time reduction from A to B
- Create a polynomially bounded Turing Machine N deciding A

Reductions

Theorem

If $A \leq_{\mathrm{P}} B$ and $B \in \mathrm{P}$, then $A \in \mathrm{P}$.

Proof:

- M: a polynomially bounded Turing Machine deciding B
- f : a polynomial time reduction from A to B
- Create a polynomially bounded Turing Machine N deciding A
$N=$ "On input w :

1. Compute $f(w)$.
2. Run M on $f(w)$ and output whatever M outputs."

Example

HPATH $=\{\langle G, s, t\rangle \mid G$ is a graph with a Hamiltonian path from s to $t\}$
HCYCLE $=\{\langle G\rangle \mid G$ is a graph with a Hamiltonian cycle $\}$
Show that HPATH is polynomial time reducible to HCYCLE.
Solution:

Example

HPATH $=\{\langle G, s, t\rangle \mid G$ is a graph with a Hamiltonian path from s to $t\}$
HCYCLE $=\{\langle G\rangle \mid G$ is a graph with a Hamiltonian cycle $\}$
Show that HPATH is polynomial time reducible to HCYCLE.
Solution:

- input of HPATH: a graph $G=(V, E)$ and two vertices $s, t \in V$
- create an instance of HCYCLE
- $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ where $V^{\prime}=V \cup\left\{v_{0}\right\}$ and $E^{\prime}=E \cup\left\{\left(v_{0}, s\right),\left(v_{0}, t\right)\right\}$

Example

HPATH $=\{\langle G, s, t\rangle \mid G$ is a graph with a Hamiltonian path from s to $t\}$
HCYCLE $=\{\langle G\rangle \mid G$ is a graph with a Hamiltonian cycle $\}$
Show that HPATH is polynomial time reducible to HCYCLE.
Solution:

- input of HPATH: a graph $G=(V, E)$ and two vertices $s, t \in V$
- create an instance of HCYCLE
- $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ where $V^{\prime}=V \cup\left\{v_{0}\right\}$ and $E^{\prime}=E \cup\left\{\left(v_{0}, s\right),\left(v_{0}, t\right)\right\}$

- The reduction (transformation) is of polynomial time

Example

HPATH $=\{\langle G, s, t\rangle \mid G$ is a graph with a Hamiltonian path from s to $t\}$
HCYCLE $=\{\langle G\rangle \mid G$ is a graph with a Hamiltonian cycle $\}$
Show that HPATH is polynomial time reducible to HCYCLE.
Solution:

- input of HPATH: a graph $G=(V, E)$ and two vertices $s, t \in V$
- create an instance of HCYCLE
- $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ where $V^{\prime}=V \cup\left\{v_{0}\right\}$ and $E^{\prime}=E \cup\left\{\left(v_{0}, s\right),\left(v_{0}, t\right)\right\}$

- The reduction (transformation) is of polynomial time

We are not done!!!

Example

Solution (cont'd):
There is a Hamiltonian Path from s to t in G if and only if there is a Hamiltonian Cycle in G^{\prime}

Example

Solution (cont'd):
There is a Hamiltonian Path from s to t in G if and only if there is a Hamiltonian Cycle in G^{\prime}
(\Rightarrow)

- consider a Hamiltonian Path from s to t in G :

$$
s \rightarrow v_{2} \rightarrow \ldots \rightarrow v_{n-1} \rightarrow t
$$

Example

Solution (cont'd):
There is a Hamiltonian Path from s to t in G if and only if there is a Hamiltonian Cycle in G^{\prime}
(\Rightarrow)

- consider a Hamiltonian Path from s to t in G : $s \rightarrow v_{2} \rightarrow \ldots \rightarrow v_{n-1} \rightarrow t$
- then $v_{0} \rightarrow s \rightarrow v_{2} \rightarrow \ldots \rightarrow v_{n-1} \rightarrow t \rightarrow v_{0}$ is a Hamiltonian Cycle in G^{\prime}

Example

Solution (cont'd):
There is a Hamiltonian Path from s to t in G if and only if there is a Hamiltonian Cycle in G^{\prime}
(\Rightarrow)

- consider a Hamiltonian Path from s to t in G :

$$
s \rightarrow v_{2} \rightarrow \ldots \rightarrow v_{n-1} \rightarrow t
$$

- then $v_{0} \rightarrow s \rightarrow v_{2} \rightarrow \ldots \rightarrow v_{n-1} \rightarrow t \rightarrow v_{0}$ is a Hamiltonian Cycle in G^{\prime}
(\Leftarrow)
- consider a Hamiltonian Cycle in G^{\prime}

Example

Solution (cont'd):
There is a Hamiltonian Path from s to t in G if and only if there is a Hamiltonian Cycle in G^{\prime}
(\Rightarrow)

- consider a Hamiltonian Path from s to t in G :

$$
s \rightarrow v_{2} \rightarrow \ldots \rightarrow v_{n-1} \rightarrow t
$$

- then $v_{0} \rightarrow s \rightarrow v_{2} \rightarrow \ldots \rightarrow v_{n-1} \rightarrow t \rightarrow v_{0}$ is a Hamiltonian Cycle in G^{\prime}
(\Leftarrow)
- consider a Hamiltonian Cycle in G^{\prime}
- this cycle should pass from v_{0}

Example

Solution (cont'd):
There is a Hamiltonian Path from s to t in G if and only if there is a Hamiltonian Cycle in G^{\prime}
(\Rightarrow)

- consider a Hamiltonian Path from s to t in G :

$$
s \rightarrow v_{2} \rightarrow \ldots \rightarrow v_{n-1} \rightarrow t
$$

- then $v_{0} \rightarrow s \rightarrow v_{2} \rightarrow \ldots \rightarrow v_{n-1} \rightarrow t \rightarrow v_{0}$ is a Hamiltonian Cycle in G^{\prime}
(\Leftarrow)
- consider a Hamiltonian Cycle in G^{\prime}
- this cycle should pass from v_{0}
- there are only two edges incident to $v_{0}:\left(s, v_{0}\right)$ and $\left(t, v_{0}\right)$

Example

Solution (cont'd):
There is a Hamiltonian Path from s to t in G if and only if there is a Hamiltonian Cycle in G^{\prime}
(\Rightarrow)

- consider a Hamiltonian Path from s to t in G :

$$
s \rightarrow v_{2} \rightarrow \ldots \rightarrow v_{n-1} \rightarrow t
$$

- then $v_{0} \rightarrow s \rightarrow v_{2} \rightarrow \ldots \rightarrow v_{n-1} \rightarrow t \rightarrow v_{0}$ is a Hamiltonian Cycle in G^{\prime}
(\Leftarrow)
- consider a Hamiltonian Cycle in G^{\prime}
- this cycle should pass from v_{0}
- there are only two edges incident to $v_{0}:\left(s, v_{0}\right)$ and $\left(t, v_{0}\right)$
- both $\left(s, v_{0}\right)$ and $\left(t, v_{0}\right)$ should be part of the Hamiltonian Cycle

Example

Solution (cont'd):
There is a Hamiltonian Path from s to t in G if and only if there is a Hamiltonian Cycle in G^{\prime}
(\Rightarrow)

- consider a Hamiltonian Path from s to t in G :

$$
s \rightarrow v_{2} \rightarrow \ldots \rightarrow v_{n-1} \rightarrow t
$$

- then $v_{0} \rightarrow s \rightarrow v_{2} \rightarrow \ldots \rightarrow v_{n-1} \rightarrow t \rightarrow v_{0}$ is a Hamiltonian Cycle in G^{\prime}
(\Leftarrow)
- consider a Hamiltonian Cycle in G^{\prime}
- this cycle should pass from v_{0}
- there are only two edges incident to $v_{0}:\left(s, v_{0}\right)$ and $\left(t, v_{0}\right)$
- both $\left(s, v_{0}\right)$ and $\left(t, v_{0}\right)$ should be part of the Hamiltonian Cycle
- Hamiltonian Cycle in $G^{\prime}: t \rightarrow v_{0} \rightarrow s \rightarrow \ldots \rightarrow t$

Example

Solution (cont'd):
There is a Hamiltonian Path from s to t in G if and only if there is a Hamiltonian Cycle in G^{\prime}
(\Rightarrow)

- consider a Hamiltonian Path from s to t in G :

$$
s \rightarrow v_{2} \rightarrow \ldots \rightarrow v_{n-1} \rightarrow t
$$

- then $v_{0} \rightarrow s \rightarrow v_{2} \rightarrow \ldots \rightarrow v_{n-1} \rightarrow t \rightarrow v_{0}$ is a Hamiltonian Cycle in G^{\prime}
(\Leftarrow)
- consider a Hamiltonian Cycle in G^{\prime}
- this cycle should pass from v_{0}
- there are only two edges incident to $v_{0}:\left(s, v_{0}\right)$ and $\left(t, v_{0}\right)$
- both $\left(s, v_{0}\right)$ and $\left(t, v_{0}\right)$ should be part of the Hamiltonian Cycle
- Hamiltonian Cycle in $G^{\prime}: t \rightarrow v_{0} \rightarrow s \rightarrow \ldots \rightarrow t$
- there is a Hamiltonian Path from s to t in G

Steps of a reduction

Reduction from A to B

1. transform an instance I_{A} of A to an instance I_{B} of B
2. show that the reduction is of polynomial size
3. prove that:
"there is a solution for the problem A on the instance I_{A}
if and only if
there is a solution for the problem B on the instance I_{B} "

Steps of a reduction

Reduction from A to B

1. transform an instance I_{A} of A to an instance I_{B} of B
2. show that the reduction is of polynomial size
3. prove that:
"there is a solution for the problem A on the instance I_{A}
if and only if
there is a solution for the problem B on the instance I_{B} "

Comments

- usually the one direction is trivial (due to the transformation)
- $\left|I_{\mathrm{B}}\right|$ is polynomially bounded by $\left|I_{\mathrm{A}}\right|$

List of problems

DIRHCYCLE $=\{\langle G\rangle \mid G$ is a directed graph with a Hamiltonian cycle $\}$
CLIQUE $=\{\langle G, k\rangle \mid G$ is a graph with a k-clique $\}$
VERTEX-COVER $=\{\langle G, k\rangle \mid G$ is a graph with a set $A \subseteq V$ such that $|A|=k$ and every $e \in E$ is incident to a vertex in $A\}$

INDEPENDENT-SET $=\{\langle G, k\rangle \mid G$ is a graph with a set $A \subseteq V$ such that $|A|=k$ and there is no edge between any pair of vertices in $A\}$

LONGEST-PATH $=\{\langle G, s, t, k\rangle \mid G$ is a graph with a path from s to t of length at least $k\}$

Exercises

- Show that HCYCLE is polynomial time reducible to HPATH.

