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» Turing Machines

> universal computational model
» all variants of the model are equivalent w.r.t. decidability



» Non-deterministic Turing Machines

» decide the same languages as the deterministic
> ... but not using the same number of steps



» Reduction
» Goal: to classify the problems in complexity classes

» time complexity: number of steps w.r.t. the size of the input
> space complexity
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» Goal: to classify the problems in complexity classes

» time complexity: number of steps w.r.t. the size of the input
> space complexity

Focus on decidable languages (solvable problems)
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Example: L = {0F1% | k >0}

My = "On input w:
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3. If no 0’'s and no 1's remain in the tape then accept, else reject.”
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Let f : N — N be a function. We define the time complexity class

TIME(f(n)) = {L | L is a language decided by a Turing Machine
in O(f(n)) time, where n is the size of the input}

Example: L = {0F1% | k >0}

My = "On input w:
1. Scan the tape and reject if a 0 is found on the right of a 1.

2. Repeat:
2.1 scan the tape deleting every second 0 and then every second 1.

3. If no 0’'s and no 1's remain in the tape then accept, else reject.”



Time complexity class

Let f : N — N be a function. We define the time complexity class

TIME(f(n)) = {L | L is a language decided by a Turing Machine
in O(f(n)) time, where n is the size of the input}

Example: L = {0¥1% | k > 0} € TIME(nlog,n)

My = "On input w:
1. Scan the tape and reject if a 0 is found on the right of a 1.

2. Repeat:
2.1 scan the tape deleting every second 0 and then every second 1.

3. If no 0’'s and no 1's remain in the tape then accept, else reject.”



The class P

A Turing Machine M = (K, %, T, 4, s, H) is called polynomially
bounded if there is a polynomial p and for any input w there is no
configuration C' such that (s, Lw) |_117v(1\w|) C.

A language is called polynomially decidable if there is a polynomially
bounded Turing Machine that decides it.



The class P

A Turing Machine M = (K, %, T, 4, s, H) is called polynomially
bounded if there is a polynomial p and for any input w there is no
configuration C' such that (s, Lw) I—’;V([‘wl) C.

A language is called polynomially decidable if there is a polynomially
bounded Turing Machine that decides it.

P is the class of polynomially decidable languages.

P =| JTIME(n*)
k
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» How to define the language corresponding to PATH?
PATH = {(G, s,t) | G is a graph that has a path from s to ¢}

» (G, s,t) is the input
> |(G, s,t)] is the size of the input



Recall: languages vs problems

» Decision problem: a problem with a yes/no answer

» example
PATH: Given a graph G = (V, E) and two nodes s,t € V, is there
a path from s to t?

» Is PATH a language? No

» How to define the language corresponding to PATH?
PATH = {(G, s,t) | G is a graph that has a path from s to ¢}

» (G, s,t) is the input
> |(G, s,t)] is the size of the input

» PATH € P?



Recall: languages vs problems

» Decision problem: a problem with a yes/no answer

» example
PATH: Given a graph G = (V, E) and two nodes s,t € V, is there
a path from s to t?

» Is PATH a language? No

» How to define the language corresponding to PATH?
PATH = {(G, s,t) | G is a graph that has a path from s to ¢}

» (G, s,t) is the input
> |(G, s,t)] is the size of the input

» PATH € P?
> Yes (i.e., Breadth First Search in O(|V| + |E]))
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Enhanced Turing Machine models

» Does the definition of the class P remains the same if we use
multiple tapes?  YES

> Recall: if a multiple tape Turing Machine halts on input w after ¢
steps, then the corresponding single tape Turing Machine halts after
O(t(Jlw] +t)) steps.

Example: L = {0F1* | k > 0}

Ms = "On input w:
1. Scan the tape and reject if a 0 is found on the right of a 1.
2. Copy the Q's in tape 2.

3. Scan tapes 1 & 2 simultaneously and delete a single 0 from tape 2
and a single 1 from tape 1.

4. If no O’s and no 1's remain then accept, else reject.”



Enhanced Turing Machine models

» Does the definition of the class P remains the same if we use
multiple tapes?  YES

> Recall: if a multiple tape Turing Machine halts on input w after ¢
steps, then the corresponding single tape Turing Machine halts after
O(t(Jlw] +t)) steps.

Example: L = {0F1* | k > 0}

Ms = "On input w:
1. Scan the tape and reject if a 0 is found on the right of a 1.
2. Copy the Q's in tape 2.

3. Scan tapes 1 & 2 simultaneously and delete a single 0 from tape 2
and a single 1 from tape 1.

4. If no O’s and no 1's remain then accept, else reject.”

» complexity: O(n) = LeTIME(n?) = LeP
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Non-deterministic Turing Machines
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The running time of a non-deterministic Turing Machine which decides
a language is a function f : N — N, where f(n) is the maximum number
of steps on any branch of the computation on any input of length n.



Every f(n) time non-deterministic Turing Machine NDTM has an
equivalent 20 (") time deterministic Turing Machine DT M.

Proof:
» Starting from N DT M, construct a 3-tapes DT M
tape 1: input (never changes)
tape 2: simulation
tape 3: address



Non-deterministic vs Deterministic Turing Machines

Theorem

Every f(n) time non-deterministic Turing Machine NDTM has an
equivalent 20U (") time deterministic Turing Machine DT M .

Proof:
» Starting from NDT M, construct a 3-tapes DT M

tape 1: input (never changes)
tape 2: simulation

tape 3: address 1
» data on tape 3: 11 12
» each node of the computation 111 112 122
tree of NDT M has at most ¢ 1
children: ¢ < O(|K]|) 1221 1222
> address of a node in f

{1,2,...,c}" 12211



Non-deterministic vs Deterministic Turing Machines

Simulation:
1. Initialize tape 1 with the input w and tapes 2 & 3 to be empty.
2. Copy the contents of tape 1 to tape 2.

3. Simulate NDTM on tape 2 using the sequence of computations
described in tape 3. If an accepting configuration is yielded, then
accept.

4. Update the string in tape 3 with the lexicographic next string and go
to 2.

Running time
» recall: ¢ < O(|K])

» how many nodes in the computation tree?
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2. Copy the contents of tape 1 to tape 2.

3. Simulate NDTM on tape 2 using the sequence of computations
described in tape 3. If an accepting configuration is yielded, then
accept.
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Non-deterministic vs Deterministic Turing Machines

Simulation:
1. Initialize tape 1 with the input w and tapes 2 & 3 to be empty.
2. Copy the contents of tape 1 to tape 2.

3. Simulate NDTM on tape 2 using the sequence of computations
described in tape 3. If an accepting configuration is yielded, then
accept.

4. Update the string in tape 3 with the lexicographic next string and go
to 2.

Running time
recall: ¢ < O(|K])

» how many nodes in the computation tree?
l+ctet+.. .+ =0(fM)

time to simulate each node: O(f(n))
in total O(f(n) - f(M) = OU ™)

transformation to single tape: (co(f(")))2 = O (1)

v

v

v

v



Non-deterministic time complexity class

Let f: N — N be a function. We define the non-deterministic time
complexity class

NTIME(f(n)) = {L | L is a language decided by a non-deterministic
Turing Machine in O(f(n)) time, where n is the
size of the input}
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Example: COMPOSITES = {z | = p - ¢, for some integers p,q > 1}
M = “On input z:

1. Non-deterministically generate two integers p, q € [2, /).

2. Compute the product p- g

3. If x = p- q then accept, else reject.”



Non-deterministic time complexity class

Let f: N — N be a function. We define the non-deterministic time
complexity class

NTIME(f(n)) = {L | L is a language decided by a non-deterministic
Turing Machine in O(f(n)) time, where n is the
size of the input}

Example: COMPOSITES = {z | = p - ¢, for some integers p,q > 1}
M = “On input z:

1. Non-deterministically generate two integers p, q € [2, /).

2. Compute the product p- g

3. If x = p- q then accept, else reject.”

» M decides COMPOSITES
> f(n) = O(n-logy n-2°0°€2™) (Fiirer's algorithm for multiplication)
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Non-deterministic time complexity class

Let f: N — N be a function. We define the non-deterministic time

complexity class

NTIME(f(n)) = {L | L is a language decided by a non-deterministic
Turing Machine in O(f(n)) time, where n is the
size of the input}

Example:
HPATH = {(G, s,t) | G is a graph with a Hamiltonian path from s to t}
M = "On input (G, s,1):
1. Non-deterministically generate a permutation of the vertex set,
V1,V2y...,Un.
2. Ifvy =s, v, =t and (v;,v;41) € E foreach i =1,2,...n — 1, then
accept, else reject.”



Non-deterministic time complexity class

Let f: N — N be a function. We define the non-deterministic time

complexity class

NTIME(f(n)) = {L | L is a language decided by a non-deterministic
Turing Machine in O(f(n)) time, where n is the
size of the input}

Example:
HPATH = {(G, s,t) | G is a graph with a Hamiltonian path from s to t}
M = "On input (G, s,1):
1. Non-deterministically generate a permutation of the vertex set,
V1,V2y...,Un.
2. Ifvy =s, v, =t and (v;,v;41) € E foreach i =1,2,...n — 1, then
accept, else reject.”

» M decides HPATH
» f(n) = O(nz) = HPATH € NTIME(n?)
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a Hamiltonian path from s to ¢
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Certificates and Verifiers

“non-deterministically generate’ a string
check if the generated string has a certain property of the language

if this input is in the language, then at least one such string exists

vV v v v

we call this string a certificate

v

Examples of certificates

» COMPOSITES: (p,q) suchz=p-q
» HPATH: (v1,v2,...,0n) such that s=v1 w2 — ... > v, =tis
a Hamiltonian path from s to ¢

» A verifier for a language L is an algorithm )V where

L = {w |V accepts (w,c) for each certificate c}

» A polynomial time verifier runs in polynomial time with respect to
the length of the input w



A language L has a polynomial time verifier V if and only if there is a
polynomial time Non-deterministic Turing Machine N DT M which
decides it.

Proof: (=) Consider a polynomial time verifier V for L

NDTM =



Equivalence of Verifiers and Non-deterministic TM

Theorem

A language L has a polynomial time verifier V if and only if there is a
polynomial time Non-deterministic Turing Machine N DT M which
decides it.

Proof: (=) Consider a polynomial time verifier V for L

NDTM = "On input w of length n:
1. Non-deterministically generate a string ¢ of length n”.
2. Run V on input (w,c).

3. If V accepts, then accept, else reject.”



A language L has a polynomial time verifier V if and only if there is a
polynomial time Non-deterministic Turing Machine N DT M which
decides it.

Proof: (<) Consider a polynomial time Non-deterministic Turing
Machine NDT M that decides L

V:



Equivalence of Verifiers and Non-deterministic TM

Theorem

A language L has a polynomial time verifier V if and only if there is a
polynomial time Non-deterministic Turing Machine N DT M which
decides it.

Proof: (<) Consider a polynomial time Non-deterministic Turing
Machine NDT M that decides L

V = “On input (w, ¢):

1. Simulate NDTM on input w using each symbol of ¢ as the
non-deterministically choice in order to decide the next step.

2. If this branch of computation accepts, then accept, else reject.”



The class NP

A non-deterministic Turing Machine M = (K, X, T, A, s, H) is called
polynomially bounded if there is a polynomial p and for any input w
there is no configuration C such that (s, Liw) F2\"D ¢!

A language is called non-deterministically polynomially decidable if
there is a polynomially bounded Turing Machine that decides it.
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The class NP

A non-deterministic Turing Machine M = (K, X, T, A, s, H) is called
polynomially bounded if there is a polynomial p and for any input w
there is no configuration C such that (s, Liw) F2\"D ¢!

A language is called non-deterministically polynomially decidable if
there is a polynomially bounded Turing Machine that decides it.

NP is the class of non-deterministic polynomially decidable languages.

NP = | NTIME(n")
k

equivalently

NP is the class of languages that have a polynomial time verifier.
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Be careful !!
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NP



Be careful !!
NP means “non-deterministic polynomial” and not “non-polynomial”

NP

What do we know? NP C EXPTIME = | TIME(2"")
k



A function f : ¥* — 3* is called polynomial time computable if there
is a polynomially bounded Turing Machine that computes it.



Reductions

Definition
A function f : ¥* — X* is called polynomial time computable if there
is a polynomially bounded Turing Machine that computes it.

A language A is polynomial time reducible to language B, denoted
A <p B, if there is a polynomial time computable function f : ¥* — 3*,
where for every input w, it holds that

we A f(w) eB

This function f is called a polynomial time reduction from A to B.




IfA<p B and B € P, then A € P.

Proof:



IfA<p B and B € P, then A € P.

Proof:
» M: a polynomially bounded Turing Machine deciding B
» f: a polynomial time reduction from A to B

» Create a polynomially bounded Turing Machine N deciding A



IfA<p B and B € P, then A € P.

Proof:

» M: a polynomially bounded Turing Machine deciding B
» f: a polynomial time reduction from A to B

» Create a polynomially bounded Turing Machine N deciding A

N = "On input w:
1. Compute f(w).
2. Run M on f(w) and output whatever M outputs.”



HPATH = {(G, s,t) | G is a graph with a Hamiltonian path from s to ¢}
HCYCLE = {(G) | G is a graph with a Hamiltonian cycle}
Show that HPATH is polynomial time reducible to HCYCLE.

Solution:



Example

HPATH = {(G, s,t) | G is a graph with a Hamiltonian path from s to ¢}
HCYCLE = {(G) | G is a graph with a Hamiltonian cycle}
Show that HPATH is polynomial time reducible to HCYCLE.

Solution:

» input of HPATH: a graph G = (V, E) and two vertices s,t € V
» create an instance of HCYCLE
» G = (V' E') where V' =V U{w} and E' = E U {(vo, s), (vo,t)}



Example

HPATH = {(G, s,t) | G is a graph with a Hamiltonian path from s to ¢}
HCYCLE = {(G) | G is a graph with a Hamiltonian cycle}
Show that HPATH is polynomial time reducible to HCYCLE.

Solution:

» input of HPATH: a graph G = (V, E) and two vertices s,t € V
» create an instance of HCYCLE
» G = (V' E') where V' =V U{w} and E' = E U {(vo, s), (vo,t)}
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Example

HPATH = {(G, s,t) | G is a graph with a Hamiltonian path from s to ¢}
HCYCLE = {(G) | G is a graph with a Hamiltonian cycle}
Show that HPATH is polynomial time reducible to HCYCLE.

Solution:

» input of HPATH: a graph G = (V, E) and two vertices s,t € V
» create an instance of HCYCLE
» G = (V' E') where V' =V U{w} and E' = E U {(vo, s), (vo,t)}

» The reduction
(transformation) is of
[ . .
Vo polynomial time

G’ We are not donel!l!
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There is a Hamiltonian Path from s to t in G if and only if there is a
Hamiltonian Cycle in G’
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Solution (cont'd):

There is a Hamiltonian Path from s to t in G if and only if there is a
Hamiltonian Cycle in G’

(=)
» consider a Hamiltonian Path from s to t in G:
§ =V — ... > VUp_1 —1
» then vg > s — v9 — ... 2> v,_1 — t = vg is a Hamiltonian Cycle
in G’
(=)
» consider a Hamiltonian Cycle in G’

» this cycle should pass from vy



Example

Solution (cont'd):

There is a Hamiltonian Path from s to ¢ in GG if and only if there is a
Hamiltonian Cycle in G’

=)

» consider a Hamiltonian Path from s to ¢ in G:
S— Vg — ... > Up_1—1

» then vy — s = vs — ... 2> v,_1 =t = vg is a Hamiltonian Cycle
in G’
(<)
» consider a Hamiltonian Cycle in G’
» this cycle should pass from v,

» there are only two edges incident to vg: (s,v0) and (¢,vg)
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Solution (cont'd):

There is a Hamiltonian Path from s to ¢ in GG if and only if there is a
Hamiltonian Cycle in G’

(=)
» consider a Hamiltonian Path from s to ¢ in G:
S— Vg — ... > Up_1—1

» then vy — s = vs — ... 2> v,_1 =t = vg is a Hamiltonian Cycle
in G’
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consider a Hamiltonian Cycle in G’

>

» this cycle should pass from v,

» there are only two edges incident to vg: (s,v0) and (¢,vg)
>

both (s,v0) and (¢,vg) should be part of the Hamiltonian Cycle



Example

Solution (cont'd):

There is a Hamiltonian Path from s to ¢ in GG if and only if there is a
Hamiltonian Cycle in G’

(=)
» consider a Hamiltonian Path from s to ¢ in G:

§ =V — ... > VUp_1 —1

» then vy — s = vs — ... 2> v,_1 =t = vg is a Hamiltonian Cycle
in G’

consider a Hamiltonian Cycle in G’

this cycle should pass from vy

both (s,v0) and (¢,vg) should be part of the Hamiltonian Cycle

>
>
» there are only two edges incident to vg: (s,v0) and (¢,vg)
>
» Hamiltonian Cycle in G': t > vg > s — ... >t



Example

Solution (cont'd):

There is a Hamiltonian Path from s to ¢ in GG if and only if there is a
Hamiltonian Cycle in G’
=)
» consider a Hamiltonian Path from s to ¢ in G:
S— Vg — ... > Up_1—1
» then vy — s = vs — ... 2> v,_1 =t = vg is a Hamiltonian Cycle
in G’
(<)
consider a Hamiltonian Cycle in G’
this cycle should pass from vy
there are only two edges incident to vg: (s,vg) and (¢, vo)
both (s,v0) and (¢,vg) should be part of the Hamiltonian Cycle
Hamiltonian Cycle in G': ¢t vy — s — ... =t

vV v v v v .Yy

there is a Hamiltonian Path from s to ¢ in G O



Reduction from A to B

1. transform an instance Io of A to an instance Iz of B
2. show that the reduction is of polynomial size

3. prove that:
“there is a solution for the problem A on the instance Ia
if and only if
there is a solution for the problem B on the instance Ig"



Steps of a reduction

Reduction from A to B

1. transform an instance I5 of A to an instance Iy of B
2. show that the reduction is of polynomial size

3. prove that:
“there is a solution for the problem A on the instance Ia
if and only if
there is a solution for the problem B on the instance Ig"

Comments
» usually the one direction is trivial (due to the transformation)

» |Ig] is polynomially bounded by |14 |



List of problems

DIRHCYCLE = {(G) | G is a directed graph with a Hamiltonian cycle}
CLIQUE = {(G, k) | G is a graph with a k-clique}

VERTEX-COVER = {{(G, k) | G is a graph with a set A C V such
that |A| = k and every e € E is incident to a vertex in A}

INDEPENDENT-SET = {(G,k) | G is a graph with aset ACV
such that |A| = k and there is no edge between any pair of vertices in A}

LONGEST-PATH = {(G, s,t,k) | G is a graph with a path from s to
t of length at least k}



» Show that HCYCLE is polynomial time reducible to HPATH.



