Fundamental Computer Science

Denis Trystram (inspired by Giorgio Lucarelli)

February, 2020

A Non-deterministic Turing Machine (M) is a sixtuple $(K, \Sigma, \Gamma, \Delta, s, H)$, where K, Σ , Γ , s and H are as in the definition of the Deterministic Turing Machine, and Δ describes the transitions and it is a *subset* of

 $((K \setminus H) \times \Gamma) \quad \times \quad (K \times (\Gamma \cup \{\leftarrow, \rightarrow\}))$

A Non-deterministic Turing Machine (M) is a sixtuple $(K, \Sigma, \Gamma, \Delta, s, H)$, where K, Σ , Γ , s and H are as in the definition of the Deterministic Turing Machine, and Δ describes the transitions and it is a *subset* of

$$((K \setminus H) \times \Gamma) \quad \times \quad (K \times (\Gamma \cup \{\leftarrow, \rightarrow\}))$$

 \blacktriangleright Δ is not a function

- ▶ a single pair of (q, σ) can lead to multiple pairs (q', σ')
- the empty string ϵ is allowed as a transition symbol

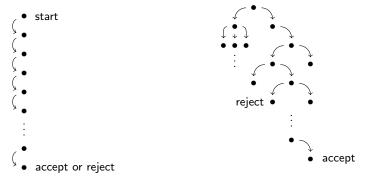
A Non-deterministic Turing Machine (M) is a sixtuple $(K, \Sigma, \Gamma, \Delta, s, H)$, where K, Σ , Γ , s and H are as in the definition of the Deterministic Turing Machine, and Δ describes the transitions and it is a *subset* of

$$((K \setminus H) \times \Gamma) \quad \times \quad (K \times (\Gamma \cup \{\leftarrow, \rightarrow\}))$$

- \blacktriangleright Δ is not a function
 - \blacktriangleright a single pair of (q,σ) can lead to multiple pairs (q',σ')
 - \blacktriangleright the empty string ϵ is allowed as a transition symbol
- ► A configuration may *yield* several configurations in a single step
 - \vdash_M is not necessarily uniquely identified

Non-determinism

▶ the next step is **not unique**



deterministic computation

Comparison deterministic vs non-deterministic

Definitions

Let $M = (K, \Sigma, \Gamma, \Delta, s, H)$ be a Non-deterministic Turing Machine. We say that M accepts an input $w \in \Sigma^*$ if

 $(s, {\underline{\sqcup}} w) \vdash^*_M (h, u \underline{\sigma} v)$

for some $h \in H$, $\sigma \in \Sigma$ and $u, v \in \Sigma^*$.

Definitions

Let $M = (K, \Sigma, \Gamma, \Delta, s, H)$ be a Non-deterministic Turing Machine. We say that M accepts an input $w \in \Sigma^*$ if

 $(s, {\underline{\sqcup}} w) \vdash^*_M (h, u \underline{\sigma} v)$

for some $h \in H$, $\sigma \in \Sigma$ and $u, v \in \Sigma^*$.

We say that M decides a language L if for each $w \in \Sigma^*$ the following two conditions hold:

- 1. there is natural number $N \in \mathbb{N}$ (depending on M and |w|) such that there is no configuration c satisfying $(s, \underline{\sqcup}w) \vdash_M^N c$
- 2. $w \in L$ if and only if $(s, \sqsubseteq w) \vdash_M^* (h, u\underline{\sigma}v)$ for some $\sigma \in \Sigma$ and $u, v \in \Sigma^*$

Definitions (cont'd)

Let $M = (K, \Sigma, \Gamma, \Delta, s, H)$ be a Non-deterministic Turing Machine.

We say that M computes a function $f: \Sigma^* \to \Sigma^*$ if for each $w \in \Sigma^*$ the following two conditions hold:

▶ $(s, \sqsubseteq w) \vdash_M^* (h, \sqsubseteq v)$ if and only if v = f(w)

A natural number m ∈ N is called *composite* if it can be written as the product of two natural numbers p, q ∈ N, i.e., m = p · q Describe (high-level) a Non-deterministic Turing Machine that recognizes the language L = {1^m : m is a composite number}.

- ▶ A natural number $m \in \mathbb{N}$ is called *composite* if it can be written as the product of two natural numbers $p, q \in \mathbb{N}$, i.e., $m = p \cdot q$ Describe (high-level) a Non-deterministic Turing Machine that recognizes the language $L = \{1^m : m \text{ is a composite number}\}$.
 - 1. choose two integers \boldsymbol{p} and \boldsymbol{q} non-deterministically
 - $\ \ \, \text{multiply}\ p\ \text{and}\ q \\$
 - 3. compare a with $p \cdot q$ and if they are equal then accept

- ▶ A natural number $m \in \mathbb{N}$ is called *composite* if it can be written as the product of two natural numbers $p, q \in \mathbb{N}$, i.e., $m = p \cdot q$ Describe (high-level) a Non-deterministic Turing Machine that recognizes the language $L = \{1^m : m \text{ is a composite number}\}$.
 - 1. choose two integers \boldsymbol{p} and \boldsymbol{q} non-deterministically
 - $\ \ \, \text{multiply}\ p\ \text{and}\ q \\$
 - 3. compare a with $p\cdot q$ and if they are equal then accept
- What does non-deterministically mean?

- ▶ A natural number $m \in \mathbb{N}$ is called *composite* if it can be written as the product of two natural numbers $p, q \in \mathbb{N}$, i.e., $m = p \cdot q$ Describe (high-level) a Non-deterministic Turing Machine that recognizes the language $L = \{1^m : m \text{ is a composite number}\}$.
 - 1. choose two integers \boldsymbol{p} and \boldsymbol{q} non-deterministically
 - 2. multiply p and q
 - 3. compare a with $p \cdot q$ and if they are equal then accept
- What does non-deterministically mean?
 - ▶ choose $(p,q) \in \{(1,1), (1,11), (1,111), \dots, (11,1), (11,11), \dots\}$

- ▶ A natural number $m \in \mathbb{N}$ is called *composite* if it can be written as the product of two natural numbers $p, q \in \mathbb{N}$, i.e., $m = p \cdot q$ Describe (high-level) a Non-deterministic Turing Machine that recognizes the language $L = \{1^m : m \text{ is a composite number}\}$.
 - 1. choose two integers \boldsymbol{p} and \boldsymbol{q} non-deterministically
 - 2. multiply p and q
 - 3. compare a with $p \cdot q$ and if they are equal then accept
- What does non-deterministically mean?
 - ▶ choose $(p,q) \in \{(1,1), (1,11), (1,111), \dots, (11,1), (11,11), \dots\}$

How to transform the above machine to decide the same language?

- ▶ A natural number $m \in \mathbb{N}$ is called *composite* if it can be written as the product of two natural numbers $p, q \in \mathbb{N}$, i.e., $m = p \cdot q$ Describe (high-level) a Non-deterministic Turing Machine that recognizes the language $L = \{1^m : m \text{ is a composite number}\}$.
 - 1. choose two integers \boldsymbol{p} and \boldsymbol{q} non-deterministically
 - 2. multiply p and q
 - 3. compare a with $p \cdot q$ and if they are equal then accept
- What does non-deterministically mean?
 - ▶ choose $(p,q) \in \{(1,1), (1,11), (1,111), \dots, (11,1), (11,11), \dots\}$
- ► How to transform the above machine to decide the same language?
 - 1. choose two integers p < m and q < m non-deterministically
 - 2. multiply p and q
 - 3. compare a with $p \cdot q$ and if they are equal then *accept*, else *reject*

Exercise

Consider a set A = {a₁, a₂,..., a_n} of positive integers and an integer w ∈ N.
 Give a Non-deterministic Turing Machine that recognizes the language L = {A' ⊆ A : ∑_{a_i∈A'} a_i = w}.

Exercise

- Consider a set A = {a₁, a₂,..., a_n} of positive integers and an integer w ∈ N.
 Give a Non-deterministic Turing Machine that recognizes the language L = {A' ⊆ A : ∑a_i∈A' a_i = w}.
- 1. choose non-deterministically a set $A' \subseteq A$
- 2. add the elements of A^\prime
- 3. if they sum up to w, then *accept*

Exercise

- Consider a set A = {a₁, a₂,..., a_n} of positive integers and an integer w ∈ N.
 Give a Non-deterministic Turing Machine that recognizes the language L = {A' ⊆ A : ∑a_i∈A' a_i = w}.
- 1. choose non-deterministically a set $A' \subseteq A$
- 2. add the elements of A'
- 3. if they sum up to w, then *accept*
- ▶ How to choose A' non-deterministically?
 - produce all binary numbers of n digits
 - \blacktriangleright start from $00\ldots 0$ and add 1 at each iteration

Theorem

Every Non-deterministic Turing Machine $NDTM = (K, \Sigma, \Gamma, \Delta, s, H)$ has an equivalent Deterministic Turing Machine DTM.

Theorem

Every Non-deterministic Turing Machine $NDTM = (K, \Sigma, \Gamma, \Delta, s, H)$ has an equivalent Deterministic Turing Machine DTM.

- Use a multiple tape deterministic Turing Machine
- tape 1: input (never changes)
- tape 2: simulation
- tape 3: address

Theorem

Every Non-deterministic Turing Machine $NDTM = (K, \Sigma, \Gamma, \Delta, s, H)$ has an equivalent Deterministic Turing Machine DTM.

Proof (sketch):

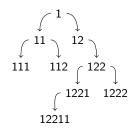
Use a multiple tape deterministic Turing Machine

tape 1: input (never changes) tape 2: simulation

tape 3: address

data on tape 3:

- each node of the computation tree of NDTM has at most c children
- address of a node in $\{1, 2, \dots, c\}^*$



- 1. Initialize tape 1 with the input w and tapes 2 & 3 to be empty.
- 2. Copy the contents of tape 1 to tape 2.
- 3. Simulate NDTM on tape 2 using the sequence of computations described in tape 3. If an accepting configuration is yielded, then *accept*.
- 4. Update the string in tape 3 with the lexicographic next string and go to 2.

- 1. Initialize tape 1 with the input w and tapes 2 & 3 to be empty.
- 2. Copy the contents of tape 1 to tape 2.
- 3. Simulate NDTM on tape 2 using the sequence of computations described in tape 3. If an accepting configuration is yielded, then *accept*.
- 4. Update the string in tape 3 with the lexicographic next string and go to 2.

- Observations:
 - we perform a Breadth First Search of the computation tree

- 1. Initialize tape 1 with the input w and tapes 2 & 3 to be empty.
- 2. Copy the contents of tape 1 to tape 2.
- 3. Simulate NDTM on tape 2 using the sequence of computations described in tape 3. If an accepting configuration is yielded, then *accept*.
- 4. Update the string in tape 3 with the lexicographic next string and go to 2.

- Observations:
 - we perform a Breadth First Search of the computation tree
 - we need exponential time of steps with respect to NDTM!

Discussion

- Non-deterministic Turing Machines seem to be more powerful than deterministic ones
- ▶ we pay this in computation time

Discussion

- Non-deterministic Turing Machines seem to be more powerful than deterministic ones
- we pay this in computation time
- next lectures: we will see what does this mean