Fundamental Computer Science

Denis Trystram (inspired by Giorgio Lucarelli)

February, 2020

Non-deterministic Turing Machine

A Non-deterministic Turing Machine (M) is a sixtuple $(K, \Sigma, \Gamma, \Delta, s, H)$, where K, Σ, Γ, s and H are as in the definition of the Deterministic Turing Machine, and Δ describes the transitions and it is a subset of

$$
((K \backslash H) \times \Gamma) \times(K \times(\Gamma \cup\{\leftarrow, \rightarrow\}))
$$

Non-deterministic Turing Machine

A Non-deterministic Turing Machine (M) is a sixtuple $(K, \Sigma, \Gamma, \Delta, s, H)$, where K, Σ, Γ, s and H are as in the definition of the Deterministic Turing Machine, and Δ describes the transitions and it is a subset of

$$
((K \backslash H) \times \Gamma) \times(K \times(\Gamma \cup\{\leftarrow, \rightarrow\}))
$$

- Δ is not a function
- a single pair of (q, σ) can lead to multiple pairs $\left(q^{\prime}, \sigma^{\prime}\right)$
- the empty string ϵ is allowed as a transition symbol

Non-deterministic Turing Machine

A Non-deterministic Turing Machine (M) is a sixtuple $(K, \Sigma, \Gamma, \Delta, s, H)$, where K, Σ, Γ, s and H are as in the definition of the Deterministic Turing Machine, and Δ describes the transitions and it is a subset of

$$
((K \backslash H) \times \Gamma) \times(K \times(\Gamma \cup\{\leftarrow, \rightarrow\}))
$$

- Δ is not a function
- a single pair of (q, σ) can lead to multiple pairs $\left(q^{\prime}, \sigma^{\prime}\right)$
- the empty string ϵ is allowed as a transition symbol
- A configuration may yield several configurations in a single step
- \vdash_{M} is not necessarily uniquely identified

Non-determinism

- the next step is not unique

deterministic computation

-

accept

Comparison deterministic vs non-deterministic

Non-deterministic Turing Machine

Definitions

Let $M=(K, \Sigma, \Gamma, \Delta, s, H)$ be a Non-deterministic Turing Machine. We say that M accepts an input $w \in \Sigma^{*}$ if

$$
(s, \underline{\sqcup} w) \vdash_{M}^{*}(h, u \underline{\sigma} v)
$$

for some $h \in H, \sigma \in \Sigma$ and $u, v \in \Sigma^{*}$.

Non-deterministic Turing Machine

Definitions

Let $M=(K, \Sigma, \Gamma, \Delta, s, H)$ be a Non-deterministic Turing Machine.
We say that M accepts an input $w \in \Sigma^{*}$ if

$$
(s, \underline{\sqcup} w) \vdash_{M}^{*}(h, u \underline{\sigma} v)
$$

for some $h \in H, \sigma \in \Sigma$ and $u, v \in \Sigma^{*}$.
We say that M decides a language L if for each $w \in \Sigma^{*}$ the following two conditions hold:

1. there is natural number $N \in \mathbb{N}$ (depending on M and $|w|$) such that there is no configuration c satisfying $(s, \sqcup w) \vdash_{M}^{N} c$
2. $w \in L$ if and only if $(s, \sqcup w) \vdash_{M}^{*}(h, u \underline{\sigma} v)$ for some $\sigma \in \Sigma$ and $u, v \in \Sigma^{*}$

Non-deterministic Turing Machine

Definitions (cont'd)

Let $M=(K, \Sigma, \Gamma, \Delta, s, H)$ be a Non-deterministic Turing Machine.
We say that M computes a function $f: \Sigma^{*} \rightarrow \Sigma^{*}$ if for each $w \in \Sigma^{*}$ the following two conditions hold:

- $(s, \bigsqcup w) \vdash_{M}^{*}(h, \bigsqcup v)$ if and only if $v=f(w)$

Example

- A natural number $m \in \mathbb{N}$ is called composite if it can be written as the product of two natural numbers $p, q \in \mathbb{N}$, i.e., $m=p \cdot q$ Describe (high-level) a Non-deterministic Turing Machine that recognizes the language $L=\left\{1^{m}: m\right.$ is a composite number $\}$.

Example

- A natural number $m \in \mathbb{N}$ is called composite if it can be written as the product of two natural numbers $p, q \in \mathbb{N}$, i.e., $m=p \cdot q$ Describe (high-level) a Non-deterministic Turing Machine that recognizes the language $L=\left\{1^{m}: m\right.$ is a composite number $\}$.

1. choose two integers p and q non-deterministically
2. multiply p and q
3. compare a with $p \cdot q$ and if they are equal then accept

Example

- A natural number $m \in \mathbb{N}$ is called composite if it can be written as the product of two natural numbers $p, q \in \mathbb{N}$, i.e., $m=p \cdot q$ Describe (high-level) a Non-deterministic Turing Machine that recognizes the language $L=\left\{1^{m}: m\right.$ is a composite number $\}$.

1. choose two integers p and q non-deterministically
2. multiply p and q
3. compare a with $p \cdot q$ and if they are equal then accept

- What does non-deterministically mean?

Example

- A natural number $m \in \mathbb{N}$ is called composite if it can be written as the product of two natural numbers $p, q \in \mathbb{N}$, i.e., $m=p \cdot q$ Describe (high-level) a Non-deterministic Turing Machine that recognizes the language $L=\left\{1^{m}: m\right.$ is a composite number $\}$.

1. choose two integers p and q non-deterministically
2. multiply p and q
3. compare a with $p \cdot q$ and if they are equal then accept

- What does non-deterministically mean?
- choose $(p, q) \in\{(1,1),(1,11),(1,111), \ldots,(11,1),(11,11), \ldots\}$

Example

- A natural number $m \in \mathbb{N}$ is called composite if it can be written as the product of two natural numbers $p, q \in \mathbb{N}$, i.e., $m=p \cdot q$ Describe (high-level) a Non-deterministic Turing Machine that recognizes the language $L=\left\{1^{m}: m\right.$ is a composite number $\}$.

1. choose two integers p and q non-deterministically
2. multiply p and q
3. compare a with $p \cdot q$ and if they are equal then accept

- What does non-deterministically mean?
- choose $(p, q) \in\{(1,1),(1,11),(1,111), \ldots,(11,1),(11,11), \ldots\}$
- How to transform the above machine to decide the same language?

Example

- A natural number $m \in \mathbb{N}$ is called composite if it can be written as the product of two natural numbers $p, q \in \mathbb{N}$, i.e., $m=p \cdot q$ Describe (high-level) a Non-deterministic Turing Machine that recognizes the language $L=\left\{1^{m}: m\right.$ is a composite number $\}$.

1. choose two integers p and q non-deterministically
2. multiply p and q
3. compare a with $p \cdot q$ and if they are equal then accept

- What does non-deterministically mean?
- choose $(p, q) \in\{(1,1),(1,11),(1,111), \ldots,(11,1),(11,11), \ldots\}$
- How to transform the above machine to decide the same language?

1. choose two integers $p<m$ and $q<m$ non-deterministically
2. multiply p and q
3. compare a with $p \cdot q$ and if they are equal then accept, else reject

Exercise

- Consider a set $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ of positive integers and an integer $w \in \mathbb{N}$.
Give a Non-deterministic Turing Machine that recognizes the language $L=\left\{A^{\prime} \subseteq A: \sum_{a_{i} \in A^{\prime}} a_{i}=w\right\}$.

Exercise

- Consider a set $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ of positive integers and an integer $w \in \mathbb{N}$.
Give a Non-deterministic Turing Machine that recognizes the language $L=\left\{A^{\prime} \subseteq A: \sum_{a_{i} \in A^{\prime}} a_{i}=w\right\}$.

1. choose non-deterministically a set $A^{\prime} \subseteq A$
2. add the elements of A^{\prime}
3. if they sum up to w, then accept

Exercise

- Consider a set $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ of positive integers and an integer $w \in \mathbb{N}$.
Give a Non-deterministic Turing Machine that recognizes the language $L=\left\{A^{\prime} \subseteq A: \sum_{a_{i} \in A^{\prime}} a_{i}=w\right\}$.

1. choose non-deterministically a set $A^{\prime} \subseteq A$
2. add the elements of A^{\prime}
3. if they sum up to w, then accept

- How to choose A^{\prime} non-deterministically?
- produce all binary numbers of n digits
- start from $00 \ldots 0$ and add 1 at each iteration

Non-deterministic Turing Machine

Theorem

Every Non-deterministic Turing Machine NDTM $=(K, \Sigma, \Gamma, \Delta, s, H)$ has an equivalent Deterministic Turing Machine DTM.

Proof (sketch):

Non-deterministic Turing Machine

Theorem

Every Non-deterministic Turing Machine $N D T M=(K, \Sigma, \Gamma, \Delta, s, H)$ has an equivalent Deterministic Turing Machine DTM.

Proof (sketch):

- Use a multiple tape deterministic Turing Machine tape 1: input (never changes)
tape 2: simulation
tape 3: address

Non-deterministic Turing Machine

Theorem

Every Non-deterministic Turing Machine NDTM $=(K, \Sigma, \Gamma, \Delta, s, H)$ has an equivalent Deterministic Turing Machine DTM.

Proof (sketch):

- Use a multiple tape deterministic Turing Machine tape 1: input (never changes)
tape 2: simulation tape 3: address
- data on tape 3:
- each node of the computation tree of $N D T M$ has at most c children
- address of a node in $\{1,2, \ldots, c\}^{*}$

Non-deterministic Turing Machine

Proof (sketch):

1. Initialize tape 1 with the input w and tapes $2 \& 3$ to be empty.
2. Copy the contents of tape 1 to tape 2 .
3. Simulate NDTM on tape 2 using the sequence of computations described in tape 3. If an accepting configuration is yielded, then accept.
4. Update the string in tape 3 with the lexicographic next string and go to 2 .

Non-deterministic Turing Machine

Proof (sketch):

1. Initialize tape 1 with the input w and tapes $2 \& 3$ to be empty.
2. Copy the contents of tape 1 to tape 2 .
3. Simulate NDTM on tape 2 using the sequence of computations described in tape 3. If an accepting configuration is yielded, then accept.
4. Update the string in tape 3 with the lexicographic next string and go to 2 .

- Observations:
- we perform a Breadth First Search of the computation tree

Non-deterministic Turing Machine

Proof (sketch):

1. Initialize tape 1 with the input w and tapes $2 \& 3$ to be empty.
2. Copy the contents of tape 1 to tape 2 .
3. Simulate NDTM on tape 2 using the sequence of computations described in tape 3. If an accepting configuration is yielded, then accept.
4. Update the string in tape 3 with the lexicographic next string and go to 2 .

- Observations:
- we perform a Breadth First Search of the computation tree
- we need exponential time of steps with respect to NDTM!

Non-deterministic Turing Machine

Discussion

- Non-deterministic Turing Machines seem to be more powerful than deterministic ones
- we pay this in computation time

Non-deterministic Turing Machine

Discussion

- Non-deterministic Turing Machines seem to be more powerful than deterministic ones
- we pay this in computation time
- next lectures: we will see what does this mean

