
Fundamental Computer Science
Sequence 1: Turing Machines

Denis Trystram (inspired by Giorgio Lucarelli)

MoSIG1, 2020

Organization

Classes

I 30 hours in total
(half Theory, half Exercises/Practice).

I 5 topics

1. Universal Computing Model: the Turing Machine
2. Alternative model: λ-Calculus
3. NP-completeness
4. Approximation Theory
5. Introduction to Quantum Computing

Evaluation

I Exam: 70%

I Reading session: 30%

References

Books

I M. Garey and D. Johnson, Computers and Intractability: A Guide to
the Theory of NP-Completeness, Freeman

I Harry Lewis and Christos Papadimitriou, Elements of the Theory of
Computation, Prentice-Hall

I Christos Papadimitriou, Computational Complexity, Pearson

I S. Arora and B. Barak, Computational complexity – a modern
approach, Cambridge

I Vijay Vazirani, Approximation Algorithms, Springer

I Arnold Rosenberg, The pillars of Computation Theory, Springer

https://www.google.fr/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0ahUKEwi04eD5o-vYAhWJJ-wKHRGxBeEQFggyMAA&url=https%3A%2F%2Fwww.u-cursos.cl%2Fingenieria%2F2010%2F2%2FCC3102%2F1%2Fmaterial_docente%2Fbajar%3Fid_material%3D322214&usg=AOvVaw0fgeZdfSwd5IdtZQZ_o9N1
https://www.google.fr/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0ahUKEwi04eD5o-vYAhWJJ-wKHRGxBeEQFggyMAA&url=https%3A%2F%2Fwww.u-cursos.cl%2Fingenieria%2F2010%2F2%2FCC3102%2F1%2Fmaterial_docente%2Fbajar%3Fid_material%3D322214&usg=AOvVaw0fgeZdfSwd5IdtZQZ_o9N1
https://www.cc.gatech.edu/fac/Vijay.Vazirani/book.pdf

Agenda

Objective of the session
Present (and discuss) the universal computational model of Turing
machine.

Preliminary

What is an Algorithm?

The first question is to discuss what can be calculated by a Computer.

Informally: this is a step-by-step procedure composed that solves a
problem.

Desired properties

I clearly defined steps (formalization)

I efficiency (complexity – how many steps?)

I termination

Preliminary

What is an Algorithm?
The first question is to discuss what can be calculated by a Computer.

Informally: this is a step-by-step procedure composed that solves a
problem.

Desired properties

I clearly defined steps (formalization)

I efficiency (complexity – how many steps?)

I termination

Preliminary

What is an Algorithm?
The first question is to discuss what can be calculated by a Computer.

Informally: this is a step-by-step procedure composed that solves a
problem.

Desired properties

I clearly defined steps (formalization)

I efficiency (complexity – how many steps?)

I termination

Short History

I Etymology:
I Al-Khwārizm̄ı – a Persian mathematician of the 9th century
I αριθµóς – the Greek word that means “number”

I Euclid’s algorithm for computing the greatest common divisor (3rd
century BC)

I End of 19th century - beginning of 20th century: mathematical
formalizations (proof systems, axioms, etc). Is there an algorithm for
any problem?

I Entscheidungsproblem (a challenge proposed by David Hilbert
1928): create an algorithm which is able to decide if a mathematical
statement is true in a finite number of operations

I Church-Turing thesis (1930’s): provides a formal definition of an
algorithm (λ-calculus, Turing machine) and show that a solution to
Entscheidungsproblem does not exist

Preliminaries

alphabet: a finite set of symbols

I examples: Roman alphabet {a, b, . . . , z}, binary alphabet {0, 1}

string: a finite sequence of symbols over an alphabet

I examples: science, 0011101

I ε: the empty string

I Σ∗: the set of all strings over an alphabet Σ (including ε)

language: a set strings over an alphabet Σ (i.e., a subset of Σ∗)

I examples: ∅, Σ, Σ∗

I more examples:
L = {w ∈ Σ∗ : w has some property P}
L = {w ∈ Σ∗ : w = wR} (wR = reverse of w)
L = {w ∈ {0, 1}∗ : w has an equal number of 0’s and 1’s}
L = {w ∈ {1, 2, . . . , n} : w is a permutation of {1, 2, . . . , n}

corresponding to a Hamiltonian Path}

Preliminaries

alphabet: a finite set of symbols

I examples: Roman alphabet {a, b, . . . , z}, binary alphabet {0, 1}

string: a finite sequence of symbols over an alphabet

I examples: science, 0011101

I ε: the empty string

I Σ∗: the set of all strings over an alphabet Σ (including ε)

language: a set strings over an alphabet Σ (i.e., a subset of Σ∗)

I examples: ∅, Σ, Σ∗

I more examples:
L = {w ∈ Σ∗ : w has some property P}
L = {w ∈ Σ∗ : w = wR} (wR = reverse of w)
L = {w ∈ {0, 1}∗ : w has an equal number of 0’s and 1’s}
L = {w ∈ {1, 2, . . . , n} : w is a permutation of {1, 2, . . . , n}

corresponding to a Hamiltonian Path}

Preliminaries

alphabet: a finite set of symbols

I examples: Roman alphabet {a, b, . . . , z}, binary alphabet {0, 1}

string: a finite sequence of symbols over an alphabet

I examples: science, 0011101

I ε: the empty string

I Σ∗: the set of all strings over an alphabet Σ (including ε)

language: a set strings over an alphabet Σ (i.e., a subset of Σ∗)

I examples: ∅, Σ, Σ∗

I more examples:
L = {w ∈ Σ∗ : w has some property P}
L = {w ∈ Σ∗ : w = wR} (wR = reverse of w)
L = {w ∈ {0, 1}∗ : w has an equal number of 0’s and 1’s}

L = {w ∈ {1, 2, . . . , n} : w is a permutation of {1, 2, . . . , n}
corresponding to a Hamiltonian Path}

Preliminaries

alphabet: a finite set of symbols

I examples: Roman alphabet {a, b, . . . , z}, binary alphabet {0, 1}

string: a finite sequence of symbols over an alphabet

I examples: science, 0011101

I ε: the empty string

I Σ∗: the set of all strings over an alphabet Σ (including ε)

language: a set strings over an alphabet Σ (i.e., a subset of Σ∗)

I examples: ∅, Σ, Σ∗

I more examples:
L = {w ∈ Σ∗ : w has some property P}
L = {w ∈ Σ∗ : w = wR} (wR = reverse of w)
L = {w ∈ {0, 1}∗ : w has an equal number of 0’s and 1’s}
L = {w ∈ {1, 2, . . . , n} : w is a permutation of {1, 2, . . . , n}

corresponding to a Hamiltonian Path}

Preliminaries

Define first what is a problem.
An id, the list of input (with their coding) and a question.

Decision problem: a problem that can be posed as an yes/no question.

I example:
Prime
Given a integer n
Is n a prime?

I another example:
I Given a graph G = (V,E), is there a permutation π of the vertex set

such that (vπ(i), vπ(i+1)) ∈ E for all i, 1 ≤ i ≤ |V − 1|?
(Hamiltonian Path)

Preliminaries

Define first what is a problem.
An id, the list of input (with their coding) and a question.

Decision problem: a problem that can be posed as an yes/no question.

I example:
Prime
Given a integer n
Is n a prime?

I another example:
I Given a graph G = (V,E), is there a permutation π of the vertex set

such that (vπ(i), vπ(i+1)) ∈ E for all i, 1 ≤ i ≤ |V − 1|?
(Hamiltonian Path)

Preliminaries

Define first what is a problem.
An id, the list of input (with their coding) and a question.

Decision problem: a problem that can be posed as an yes/no question.

I example:
Prime
Given a integer n
Is n a prime?

I another example:
I Given a graph G = (V,E), is there a permutation π of the vertex set

such that (vπ(i), vπ(i+1)) ∈ E for all i, 1 ≤ i ≤ |V − 1|?
(Hamiltonian Path)

Preliminaries

Define first what is a problem.
An id, the list of input (with their coding) and a question.

Decision problem: a problem that can be posed as an yes/no question.

I example:
Prime
Given a integer n
Is n a prime?

I another example:
I Given a graph G = (V,E), is there a permutation π of the vertex set

such that (vπ(i), vπ(i+1)) ∈ E for all i, 1 ≤ i ≤ |V − 1|?

(Hamiltonian Path)

Preliminaries

Define first what is a problem.
An id, the list of input (with their coding) and a question.

Decision problem: a problem that can be posed as an yes/no question.

I example:
Prime
Given a integer n
Is n a prime?

I another example:
I Given a graph G = (V,E), is there a permutation π of the vertex set

such that (vπ(i), vπ(i+1)) ∈ E for all i, 1 ≤ i ≤ |V − 1|?
(Hamiltonian Path)

Beyond decision problems

Optimization: a problem of searching for the best answer

I example: Given a graph G = (V,E), two vertices s, t ∈ V and an
integer distance d(e) for each e ∈ E, find the path p between s and
t such that the sum of distances of the edges in p is minimized.

I decision version: Given a graph G = (V,E), two vertices s, t ∈ V ,
an integer distance d(e) for each e ∈ E and an integer D, is there
a path p between s and t such that the sum of distances of the
edges in p is at most D?

Beyond decision problems

Optimization: a problem of searching for the best answer

I example: Given a graph G = (V,E), two vertices s, t ∈ V and an
integer distance d(e) for each e ∈ E, find the path p between s and
t such that the sum of distances of the edges in p is minimized.

I decision version: Given a graph G = (V,E), two vertices s, t ∈ V ,
an integer distance d(e) for each e ∈ E and an integer D, is there
a path p between s and t such that the sum of distances of the
edges in p is at most D?

Beyond decision problems

Optimization: a problem of searching for the best answer

I example: Given a graph G = (V,E), two vertices s, t ∈ V and an
integer distance d(e) for each e ∈ E, find the path p between s and
t such that the sum of distances of the edges in p is minimized.

I decision version: Given a graph G = (V,E), two vertices s, t ∈ V ,
an integer distance d(e) for each e ∈ E and an integer D, is there
a path p between s and t such that the sum of distances of the
edges in p is at most D?

Preliminaries

Observation 1:
In most of these lectures we will deal with decision problems

Observation 2:
A decision problem is defined by the input and the yes/no question

I examples of input:
I Given a set of numbers A = {a1, a2, . . . , an}
I Given a graph G = (V,E)
I Given a graph G = (V,E) and a positive weight w(e) for each e ∈ E

I < I >: string encoding of the input
I < a1, a2, . . . , an >
I < adjacency matrix of G >
I < adjacency matrix of G,w(e) ∀e ∈ E >

I |I|: size of the input (in binary)
I log2 a1 + log2 a2 + . . . log2 an
I |V |2
I |V |2 +

∑
e∈E log2 w(e)

Preliminaries

Observation 1:
In most of these lectures we will deal with decision problems

Observation 2:
A decision problem is defined by the input and the yes/no question

I examples of input:
I Given a set of numbers A = {a1, a2, . . . , an}
I Given a graph G = (V,E)
I Given a graph G = (V,E) and a positive weight w(e) for each e ∈ E

I < I >: string encoding of the input
I < a1, a2, . . . , an >
I < adjacency matrix of G >
I < adjacency matrix of G,w(e) ∀e ∈ E >

I |I|: size of the input (in binary)
I log2 a1 + log2 a2 + . . . log2 an
I |V |2
I |V |2 +

∑
e∈E log2 w(e)

Preliminaries

Observation 1:
In most of these lectures we will deal with decision problems

Observation 2:
A decision problem is defined by the input and the yes/no question

I examples of input:
I Given a set of numbers A = {a1, a2, . . . , an}
I Given a graph G = (V,E)
I Given a graph G = (V,E) and a positive weight w(e) for each e ∈ E

I < I >: string encoding of the input
I < a1, a2, . . . , an >
I < adjacency matrix of G >
I < adjacency matrix of G,w(e) ∀e ∈ E >

I |I|: size of the input (in binary)
I log2 a1 + log2 a2 + . . . log2 an
I |V |2
I |V |2 +

∑
e∈E log2 w(e)

Preliminaries

Observation 1:
In most of these lectures we will deal with decision problems

Observation 2:
A decision problem is defined by the input and the yes/no question

I examples of input:
I Given a set of numbers A = {a1, a2, . . . , an}
I Given a graph G = (V,E)
I Given a graph G = (V,E) and a positive weight w(e) for each e ∈ E

I < I >: string encoding of the input
I < a1, a2, . . . , an >
I < adjacency matrix of G >
I < adjacency matrix of G,w(e) ∀e ∈ E >

I |I|: size of the input (in binary)
I log2 a1 + log2 a2 + . . . log2 an
I |V |2
I |V |2 +

∑
e∈E log2 w(e)

Turing machine

I memory: an infinite tape
I initially, it contains the input string
I move the head left or right
I read and/or write to current cell

I control states
I finite number of them
I one current state

I At each step:
– move from state to state
– read or write or move Left

or move Right in the tape

. . . t t a b a b b a t t . . .

control

q0

q1

q2

q3

q4

head

Turing machine: formal definition

A Turing Machine (M) is a six-tuple (K,Σ,Γ, δ, s,H), where

I K is a finite set of states

I Σ is the input alphabet not containing the blank symbol t
I Γ is the tape alphabet, where t ∈ Γ and Σ ⊆ Γ

I s ∈ K: the initial state

I H ⊆ K: the set of halting states

I δ: the transition function from (K \H)× Γ to K × (Γ ∪ {←,→})

In general, δ(q, a) = (p, b) means that when M is in the state q and
reads a in the tape, it goes to the state p and

– if b ∈ Σ, writes b in the place of a
– if b ∈ {←,→}, moves the head either Left or Right

q p
a : b

Turing machine: formal definition

A Turing Machine (M) is a six-tuple (K,Σ,Γ, δ, s,H), where

I K is a finite set of states

I Σ is the input alphabet not containing the blank symbol t
I Γ is the tape alphabet, where t ∈ Γ and Σ ⊆ Γ

I s ∈ K: the initial state

I H ⊆ K: the set of halting states

I δ: the transition function from (K \H)× Γ to K × (Γ ∪ {←,→})

In general, δ(q, a) = (p, b) means that when M is in the state q and
reads a in the tape, it goes to the state p and

– if b ∈ Σ, writes b in the place of a
– if b ∈ {←,→}, moves the head either Left or Right

q p
a : b

A first example

Consider the Turing Machine M = (K,Σ,Γ, δ, s,H) where

K = {q0, q1, h}, Σ = {a}, Γ = {a,t}, s = q0, H = {h},
and δ is given by the table. How does M proceed?

q σ δ(q, σ)
q0 a (q1,t)
q0 t (h,t)
q1 a (q0, a)
q1 t (q0,→) q0

q1

h

a : t

t : t

a : a
t :→

(q0, aaa) `M (q1,taa) `M (q0,taa)

`M (q1,tta) `M (q0,t t a)

`M (q1,t t t) `M (q0,t t tt)

`M (h,t t tt)

A first example

Consider the Turing Machine M = (K,Σ,Γ, δ, s,H) where

K = {q0, q1, h}, Σ = {a}, Γ = {a,t}, s = q0, H = {h},
and δ is given by the table. How does M proceed?

q σ δ(q, σ)
q0 a (q1,t)
q0 t (h,t)
q1 a (q0, a)
q1 t (q0,→) q0

q1

h

a : t

t : t

a : a
t :→

(q0, aaa)

`M (q1,taa) `M (q0,taa)

`M (q1,tta) `M (q0,t t a)

`M (q1,t t t) `M (q0,t t tt)

`M (h,t t tt)

A first example

Consider the Turing Machine M = (K,Σ,Γ, δ, s,H) where

K = {q0, q1, h}, Σ = {a}, Γ = {a,t}, s = q0, H = {h},
and δ is given by the table. How does M proceed?

q σ δ(q, σ)
q0 a (q1,t)
q0 t (h,t)
q1 a (q0, a)
q1 t (q0,→) q0

q1

h

a : t

t : t

a : a
t :→

(q0, aaa) `M (q1,taa)

`M (q0,taa)

`M (q1,tta) `M (q0,t t a)

`M (q1,t t t) `M (q0,t t tt)

`M (h,t t tt)

A first example

Consider the Turing Machine M = (K,Σ,Γ, δ, s,H) where

K = {q0, q1, h}, Σ = {a}, Γ = {a,t}, s = q0, H = {h},
and δ is given by the table. How does M proceed?

q σ δ(q, σ)
q0 a (q1,t)
q0 t (h,t)
q1 a (q0, a)
q1 t (q0,→) q0

q1

h

a : t

t : t

a : a
t :→

(q0, aaa) `M (q1,taa) `M (q0,taa)

`M (q1,tta) `M (q0,t t a)

`M (q1,t t t) `M (q0,t t tt)

`M (h,t t tt)

A first example

Consider the Turing Machine M = (K,Σ,Γ, δ, s,H) where

K = {q0, q1, h}, Σ = {a}, Γ = {a,t}, s = q0, H = {h},
and δ is given by the table. How does M proceed?

q σ δ(q, σ)
q0 a (q1,t)
q0 t (h,t)
q1 a (q0, a)
q1 t (q0,→) q0

q1

h

a : t

t : t

a : a
t :→

(q0, aaa) `M (q1,taa) `M (q0,taa)

`M (q1,tta)

`M (q0,t t a)

`M (q1,t t t) `M (q0,t t tt)

`M (h,t t tt)

A first example

Consider the Turing Machine M = (K,Σ,Γ, δ, s,H) where

K = {q0, q1, h}, Σ = {a}, Γ = {a,t}, s = q0, H = {h},
and δ is given by the table. How does M proceed?

q σ δ(q, σ)
q0 a (q1,t)
q0 t (h,t)
q1 a (q0, a)
q1 t (q0,→) q0

q1

h

a : t

t : t

a : a
t :→

(q0, aaa) `M (q1,taa) `M (q0,taa)

`M (q1,tta) `M (q0,t t a)

`M (q1,t t t) `M (q0,t t tt)

`M (h,t t tt)

A first example

Consider the Turing Machine M = (K,Σ,Γ, δ, s,H) where

K = {q0, q1, h}, Σ = {a}, Γ = {a,t}, s = q0, H = {h},
and δ is given by the table. How does M proceed?

q σ δ(q, σ)
q0 a (q1,t)
q0 t (h,t)
q1 a (q0, a)
q1 t (q0,→) q0

q1

h

a : t

t : t

a : a
t :→

(q0, aaa) `M (q1,taa) `M (q0,taa)

`M (q1,tta) `M (q0,t t a)

`M (q1,t t t)

`M (q0,t t tt)

`M (h,t t tt)

A first example

Consider the Turing Machine M = (K,Σ,Γ, δ, s,H) where

K = {q0, q1, h}, Σ = {a}, Γ = {a,t}, s = q0, H = {h},
and δ is given by the table. How does M proceed?

q σ δ(q, σ)
q0 a (q1,t)
q0 t (h,t)
q1 a (q0, a)
q1 t (q0,→) q0

q1

h

a : t

t : t

a : a
t :→

(q0, aaa) `M (q1,taa) `M (q0,taa)

`M (q1,tta) `M (q0,t t a)

`M (q1,t t t) `M (q0,t t tt)

`M (h,t t tt)

A first example

Consider the Turing Machine M = (K,Σ,Γ, δ, s,H) where

K = {q0, q1, h}, Σ = {a}, Γ = {a,t}, s = q0, H = {h},
and δ is given by the table. How does M proceed?

q σ δ(q, σ)
q0 a (q1,t)
q0 t (h,t)
q1 a (q0, a)
q1 t (q0,→) q0

q1

h

a : t

t : t

a : a
t :→

(q0, aaa) `M (q1,taa) `M (q0,taa)

`M (q1,tta) `M (q0,t t a)

`M (q1,t t t) `M (q0,t t tt)

`M (h,t t tt)

Formalize the notation

Definition

A configuration of a Turing Machine M = (K,Σ,Γ, δ, s,H) is a
member of K × Γ∗ × Γ∗((Γ \ {t}) ∪ {ε}).

I informally: a triplet describing
I the current state
I the contents of the tape on the left of the head (including head’s

position)
I the contents of the tape on the right of the head

I example: (q1,ta, a) or simply (q1,taa) or simply (q1, aa)

Initial configuration: (s, aw) where M = (K,Σ,Γ, δ, s,H) is a Turing
Machine, a ∈ Σ, w ∈ Σ∗ and aw is the input string

Halted configuration: a configuration whose state belongs to H

I example: (h,t t tt, ε) or simply (h,t t tt) or simply (h,t)

Formalize the notation

Definition

A configuration of a Turing Machine M = (K,Σ,Γ, δ, s,H) is a
member of K × Γ∗ × Γ∗((Γ \ {t}) ∪ {ε}).

I informally: a triplet describing
I the current state
I the contents of the tape on the left of the head (including head’s

position)
I the contents of the tape on the right of the head

I example: (q1,ta, a) or simply (q1,taa) or simply (q1, aa)

Initial configuration: (s, aw) where M = (K,Σ,Γ, δ, s,H) is a Turing
Machine, a ∈ Σ, w ∈ Σ∗ and aw is the input string

Halted configuration: a configuration whose state belongs to H

I example: (h,t t tt, ε) or simply (h,t t tt) or simply (h,t)

Formalize the notation

Definition

A configuration of a Turing Machine M = (K,Σ,Γ, δ, s,H) is a
member of K × Γ∗ × Γ∗((Γ \ {t}) ∪ {ε}).

I informally: a triplet describing
I the current state
I the contents of the tape on the left of the head (including head’s

position)
I the contents of the tape on the right of the head

I example: (q1,ta, a) or simply (q1,taa) or simply (q1, aa)

Initial configuration: (s, aw) where M = (K,Σ,Γ, δ, s,H) is a Turing
Machine, a ∈ Σ, w ∈ Σ∗ and aw is the input string

Halted configuration: a configuration whose state belongs to H

I example: (h,t t tt, ε) or simply (h,t t tt) or simply (h,t)

Formalize the notation

Definition

A configuration of a Turing Machine M = (K,Σ,Γ, δ, s,H) is a
member of K × Γ∗ × Γ∗((Γ \ {t}) ∪ {ε}).

I informally: a triplet describing
I the current state
I the contents of the tape on the left of the head (including head’s

position)
I the contents of the tape on the right of the head

I example: (q1,ta, a) or simply (q1,taa) or simply (q1, aa)

Initial configuration: (s, aw) where M = (K,Σ,Γ, δ, s,H) is a Turing
Machine, a ∈ Σ, w ∈ Σ∗ and aw is the input string

Halted configuration: a configuration whose state belongs to H

I example: (h,t t tt, ε) or simply (h,t t tt) or simply (h,t)

Formalize the notation

Definition

Consider a Turing Machine M and two configurations C1 and C2 of M .
If M can go from C1 to C2 in a single step, then we write

C1 `M C2

Definition

Consider a Turing Machine M and two configurations C1 and C2 of M .
If M can go from C1 to C2 using a sequence of configurations, then we
say that C1 yields C2 and we write

C1 `∗M C2

Definition

A computation of a Turing Machine M is a sequence of configurations
C0, C1, . . . , Cn, for some n ≥ 0, such that

C0 `M C1 `M C2 `M . . . `M Cn

The length of the computation is n (or it performs n steps).

Formalize the notation

Definition

Consider a Turing Machine M and two configurations C1 and C2 of M .
If M can go from C1 to C2 in a single step, then we write

C1 `M C2

Definition

Consider a Turing Machine M and two configurations C1 and C2 of M .
If M can go from C1 to C2 using a sequence of configurations, then we
say that C1 yields C2 and we write

C1 `∗M C2

Definition

A computation of a Turing Machine M is a sequence of configurations
C0, C1, . . . , Cn, for some n ≥ 0, such that

C0 `M C1 `M C2 `M . . . `M Cn

The length of the computation is n (or it performs n steps).

Formalize the notation

Definition

Consider a Turing Machine M and two configurations C1 and C2 of M .
If M can go from C1 to C2 in a single step, then we write

C1 `M C2

Definition

Consider a Turing Machine M and two configurations C1 and C2 of M .
If M can go from C1 to C2 using a sequence of configurations, then we
say that C1 yields C2 and we write

C1 `∗M C2

Definition

A computation of a Turing Machine M is a sequence of configurations
C0, C1, . . . , Cn, for some n ≥ 0, such that

C0 `M C1 `M C2 `M . . . `M Cn

The length of the computation is n (or it performs n steps).

Determinism or not?

Definition

Implicitly, the transition δ is deterministic.

Non-deterministic Turing Machine

What happens is several outputs are allowed at each step?

The choice is among k fixed possibilities, random, round-robin, etc.

This point will be detailed in the next lecture.

Determinism or not?

Definition

Implicitly, the transition δ is deterministic.

Non-deterministic Turing Machine

What happens is several outputs are allowed at each step?

The choice is among k fixed possibilities, random, round-robin, etc.

This point will be detailed in the next lecture.

Determinism or not?

Definition

Implicitly, the transition δ is deterministic.

Non-deterministic Turing Machine

What happens is several outputs are allowed at each step?

The choice is among k fixed possibilities, random, round-robin, etc.

This point will be detailed in the next lecture.

A more general notation for Turing Machines

q0 q1

σ 6∈ a,←

a :→

Turing Machine La = (K,Σ,Γ, δ, s,H) where:
– K = {q0, q1}
– a ∈ Σ
– s = q0
– H = {q1}

I Define similar simple Turing Machines
I examples: L, R, La, Ra, L2, R2, a, t, etc

I Combine simple machines to construct more complicated ones

M1 M2

M3

a
b

1. Run M1

2. If M1 finishes and the head reads a then run M2

starting from this a

3. Else run M3 starting from this b

A more general notation for Turing Machines

q0 q1

σ 6∈ a,←

a :→

Turing Machine La = (K,Σ,Γ, δ, s,H) where:
– K = {q0, q1}
– a ∈ Σ
– s = q0
– H = {q1}

I Define similar simple Turing Machines
I examples: L, R, La, Ra, L2, R2, a, t, etc

I Combine simple machines to construct more complicated ones

M1 M2

M3

a
b

1. Run M1

2. If M1 finishes and the head reads a then run M2

starting from this a

3. Else run M3 starting from this b

A more general notation for Turing Machines

q0 q1

σ 6∈ a,←

a :→

Turing Machine La = (K,Σ,Γ, δ, s,H) where:
– K = {q0, q1}
– a ∈ Σ
– s = q0
– H = {q1}

I Define similar simple Turing Machines
I examples: L, R, La, Ra, L2, R2, a, t, etc

I Combine simple machines to construct more complicated ones

M1 M2

M3

a
b

1. Run M1

2. If M1 finishes and the head reads a then run M2

starting from this a

3. Else run M3 starting from this b

Example

What is the goal of the following Turing Machine?

> Lt R tR2
taL

2
ta

Rt

a 6= t

t

(tabct) `∗M (tabct) (Lt)

`M (tabct) (R)

`M (ttbct) (t)

`∗M (t t bc t t) (R2
t)

`M (t t bc t a) (a)

`∗M (ttbc t a) (L2
t)

`M (tabc t a) (a)

`M (tabc t a) (R)

Solution:
transforms twt to tw t wt

Example

What is the goal of the following Turing Machine?

> Lt R tR2
taL

2
ta

Rt

a 6= t

t

(tabct) `∗M (tabct) (Lt)

`M (tabct) (R)

`M (ttbct) (t)

`∗M (t t bc t t) (R2
t)

`M (t t bc t a) (a)

`∗M (ttbc t a) (L2
t)

`M (tabc t a) (a)

`M (tabc t a) (R)

Solution:
transforms twt to tw t wt

Example

What is the goal of the following Turing Machine?

> Lt R tR2
taL

2
ta

Rt

a 6= t

t

(tabct) `∗M (tabct) (Lt)

`M (tabct) (R)

`M (ttbct) (t)

`∗M (t t bc t t) (R2
t)

`M (t t bc t a) (a)

`∗M (ttbc t a) (L2
t)

`M (tabc t a) (a)

`M (tabc t a) (R)

Solution:
transforms twt to tw t wt

Example

What is the goal of the following Turing Machine?

> Lt R tR2
taL

2
ta

Rt

a 6= t

t

(tabct) `∗M (tabct) (Lt)

`M (tabct) (R)

`M (ttbct) (t)

`∗M (t t bc t t) (R2
t)

`M (t t bc t a) (a)

`∗M (ttbc t a) (L2
t)

`M (tabc t a) (a)

`M (tabc t a) (R)

Solution:
transforms twt to tw t wt

Example

What is the goal of the following Turing Machine?

> Lt R tR2
taL

2
ta

Rt

a 6= t

t

(tabct) `∗M (tabct) (Lt)

`M (tabct) (R)

`M (ttbct) (t)

`∗M (t t bc t t) (R2
t)

`M (t t bc t a) (a)

`∗M (ttbc t a) (L2
t)

`M (tabc t a) (a)

`M (tabc t a) (R)

Solution:
transforms twt to tw t wt

Example

What is the goal of the following Turing Machine?

> Lt R tR2
taL

2
ta

Rt

a 6= t

t

(tabct) `∗M (tabct) (Lt)

`M (tabct) (R)

`M (ttbct) (t)

`∗M (t t bc t t) (R2
t)

`M (t t bc t a) (a)

`∗M (ttbc t a) (L2
t)

`M (tabc t a) (a)

`M (tabc t a) (R)

Solution:
transforms twt to tw t wt

Example

What is the goal of the following Turing Machine?

> Lt R tR2
taL

2
ta

Rt

a 6= t

t

(tabct) `∗M (tabct) (Lt)

`M (tabct) (R)

`M (ttbct) (t)

`∗M (t t bc t t) (R2
t)

`M (t t bc t a) (a)

`∗M (ttbc t a) (L2
t)

`M (tabc t a) (a)

`M (tabc t a) (R)

Solution:
transforms twt to tw t wt

Example

What is the goal of the following Turing Machine?

> Lt R tR2
taL

2
ta

Rt

a 6= t

t

(tabct) `∗M (tabct) (Lt)

`M (tabct) (R)

`M (ttbct) (t)

`∗M (t t bc t t) (R2
t)

`M (t t bc t a) (a)

`∗M (ttbc t a) (L2
t)

`M (tabc t a) (a)

`M (tabc t a) (R)

Solution:
transforms twt to tw t wt

Example

What is the goal of the following Turing Machine?

> Lt R tR2
taL

2
ta

Rt

a 6= t

t

(tabct) `∗M (tabct) (Lt)

`M (tabct) (R)

`M (ttbct) (t)

`∗M (t t bc t t) (R2
t)

`M (t t bc t a) (a)

`∗M (ttbc t a) (L2
t)

`M (tabc t a) (a)

`M (tabc t a) (R)

Solution:
transforms twt to tw t wt

Example

What is the goal of the following Turing Machine?

> Lt R tR2
taL

2
ta

Rt

a 6= t

t

(tabct) `∗M (tabct) (Lt)

`M (tabct) (R)

`M (ttbct) (t)

`∗M (t t bc t t) (R2
t)

`M (t t bc t a) (a)

`∗M (ttbc t a) (L2
t)

`M (tabc t a) (a)

`M (tabc t a) (R)

Solution:
transforms twt to tw t wt

Generalize more the notation ...

High-level description

I give an algorithmic description of how the Turing Machine works in
finite and discrete steps

I what is allowed?

→ almost everything!!

Example

M = “On input w:

1. scan the input from left to right to be sure that is member of a∗b∗c∗ and
reject if not

2. find the leftmost a in the tape and if such an a does not exist, then

I scan the input for a c and if such a c exists then reject else accept

3. replace a by â

4. scan the input for the leftmost b and if such a b does not exist, then
restore all b’s (replace all b̂ by b) and goto 2

5. replace b by b̂

6. scan to the right for the first c and if such a c does not exist, then reject

7. replace c by ĉ and goto 4”

Generalize more the notation ...

High-level description

I give an algorithmic description of how the Turing Machine works in
finite and discrete steps

I what is allowed? → almost everything!!

Example

M = “On input w:

1. scan the input from left to right to be sure that is member of a∗b∗c∗ and
reject if not

2. find the leftmost a in the tape and if such an a does not exist, then

I scan the input for a c and if such a c exists then reject else accept

3. replace a by â

4. scan the input for the leftmost b and if such a b does not exist, then
restore all b’s (replace all b̂ by b) and goto 2

5. replace b by b̂

6. scan to the right for the first c and if such a c does not exist, then reject

7. replace c by ĉ and goto 4”

Generalize more the notation ...

High-level description

I give an algorithmic description of how the Turing Machine works in
finite and discrete steps

I what is allowed? → almost everything!!

Example

M = “On input w:

1. scan the input from left to right to be sure that is member of a∗b∗c∗ and
reject if not

2. find the leftmost a in the tape and if such an a does not exist, then

I scan the input for a c and if such a c exists then reject else accept

3. replace a by â

4. scan the input for the leftmost b and if such a b does not exist, then
restore all b’s (replace all b̂ by b) and goto 2

5. replace b by b̂

6. scan to the right for the first c and if such a c does not exist, then reject

7. replace c by ĉ and goto 4”

Generalize more the notation ...

High-level description

I give an algorithmic description of how the Turing Machine works in
finite and discrete steps

I what is allowed? → almost everything!!

Example L = {aibjck : i× j = k}
M = “On input w:

1. scan the input from left to right to be sure that is member of a∗b∗c∗ and
reject if not

2. find the leftmost a in the tape and if such an a does not exist, then

I scan the input for a c and if such a c exists then reject else accept

3. replace a by â

4. scan the input for the leftmost b and if such a b does not exist, then
restore all b’s (replace all b̂ by b) and goto 2

5. replace b by b̂

6. scan to the right for the first c and if such a c does not exist, then reject

7. replace c by ĉ and goto 4”

Definitions

A language L is called decidable (or Turing-decidable or recursive) if
there is a Turing Machine that decides it.

A language L is called Turing-recognizable (or recursively
enumerable) if there is a Turing Machine that recognizes it.

Definitions

A language L is called decidable (or Turing-decidable or recursive) if
there is a Turing Machine that decides it.

A language L is called Turing-recognizable (or recursively
enumerable) if there is a Turing Machine that recognizes it.

Basic theorems

Theorem

If a language L is decidable, then it is Turing-recognizable.

Theorem

If a language L is decidable, then its complement L̄ is also.

Proof.

δ′(q, a) =

 n if δ(q, a) = y
y if δ(q, a) = n
δ(q, a) otherwise

Basic theorems

Theorem

If a language L is decidable, then it is Turing-recognizable.

Theorem

If a language L is decidable, then its complement L̄ is also.

Proof.

δ′(q, a) =

 n if δ(q, a) = y
y if δ(q, a) = n
δ(q, a) otherwise

Basic theorems

Theorem

If a language L is decidable, then it is Turing-recognizable.

Theorem

If a language L is decidable, then its complement L̄ is also.

Proof.

δ′(q, a) =

 n if δ(q, a) = y
y if δ(q, a) = n
δ(q, a) otherwise

More definitions

Consider a Turing Machine M = (K,Σ,Γ, δ, s, {h}) and a string w ∈ Σ∗.
Suppose that M halts on input w and for some y ∈ Σ∗ we have

(s,tw) `∗M (h,ty)

Then, y is the output of M on input w and is denoted by M(w).

Consider a function f : Σ∗ → Σ∗. We say that M computes the
function f if M(w) = f(w) for all w ∈ Σ∗.

A function f is called decidable (or recursive) if there is a Turing
Machine that computes it.

Example

> RtL

0

1

1SL

1

0

t

The output with input
t100010111 is ... t100011000

Computes the function
succ(n) = n+ 1 in binary

More definitions

Consider a Turing Machine M = (K,Σ,Γ, δ, s, {h}) and a string w ∈ Σ∗.
Suppose that M halts on input w and for some y ∈ Σ∗ we have

(s,tw) `∗M (h,ty)

Then, y is the output of M on input w and is denoted by M(w).

Consider a function f : Σ∗ → Σ∗. We say that M computes the
function f if M(w) = f(w) for all w ∈ Σ∗.

A function f is called decidable (or recursive) if there is a Turing
Machine that computes it.

Example

> RtL

0

1

1SL

1

0

t

The output with input
t100010111 is ... t100011000

Computes the function
succ(n) = n+ 1 in binary

More definitions

Consider a Turing Machine M = (K,Σ,Γ, δ, s, {h}) and a string w ∈ Σ∗.
Suppose that M halts on input w and for some y ∈ Σ∗ we have

(s,tw) `∗M (h,ty)

Then, y is the output of M on input w and is denoted by M(w).

Consider a function f : Σ∗ → Σ∗. We say that M computes the
function f if M(w) = f(w) for all w ∈ Σ∗.

A function f is called decidable (or recursive) if there is a Turing
Machine that computes it.

Example

> RtL

0

1

1SL

1

0

t

The output with input
t100010111 is ... t100011000

Computes the function
succ(n) = n+ 1 in binary

More definitions

Consider a Turing Machine M = (K,Σ,Γ, δ, s, {h}) and a string w ∈ Σ∗.
Suppose that M halts on input w and for some y ∈ Σ∗ we have

(s,tw) `∗M (h,ty)

Then, y is the output of M on input w and is denoted by M(w).

Consider a function f : Σ∗ → Σ∗. We say that M computes the
function f if M(w) = f(w) for all w ∈ Σ∗.

A function f is called decidable (or recursive) if there is a Turing
Machine that computes it.

Example

> RtL

0

1

1SL

1

0

t

The output with input
t100010111 is ...

t100011000

Computes the function
succ(n) = n+ 1 in binary

More definitions

Consider a Turing Machine M = (K,Σ,Γ, δ, s, {h}) and a string w ∈ Σ∗.
Suppose that M halts on input w and for some y ∈ Σ∗ we have

(s,tw) `∗M (h,ty)

Then, y is the output of M on input w and is denoted by M(w).

Consider a function f : Σ∗ → Σ∗. We say that M computes the
function f if M(w) = f(w) for all w ∈ Σ∗.

A function f is called decidable (or recursive) if there is a Turing
Machine that computes it.

Example

> RtL

0

1

1SL

1

0

t

The output with input
t100010111 is ... t100011000

Computes the function
succ(n) = n+ 1 in binary

Extensions of the Turing Machine

We have already seen an extension:

I write in the tape and move left or right at the same time

I modify the definition of the transition function

initial: from (K \H)× Γ to K × (Γ ∪ {←,→})

extended: from (K \H)× Γ to K × Γ× {←,→}

I if the extended Turing Machine halts on input w after t steps, then
the initial Turing Machine halts on input w after at most 2t steps

Extensions of the Turing Machine

We have already seen an extension:

I write in the tape and move left or right at the same time

I modify the definition of the transition function

initial: from (K \H)× Γ to K × (Γ ∪ {←,→})

extended: from (K \H)× Γ to K × Γ× {←,→}

I if the extended Turing Machine halts on input w after t steps, then
the initial Turing Machine halts on input w after at most 2t steps

Multiple tapes

A k-tape Turing Machine (M) is a sextuple (K,Σ,Γ, δ, s,H), where K,
Σ, Γ, s and H are as in the definition of the ordinary Turing Machine,
and δ is a transition function

from (K \H)× Γk to K × (Γ ∪ {←,→})k

. . . t t a b a b b a t t . . .

. . . t t a a b a b t t . . .

. . . t t 1 1 0 t t . . .

control

q0

q1

q2

q3

q4

Multiple tapes

A k-tape Turing Machine (M) is a sextuple (K,Σ,Γ, δ, s,H), where K,
Σ, Γ, s and H are as in the definition of the ordinary Turing Machine,
and δ is a transition function

from (K \H)× Γk to K × (Γ ∪ {←,→})k

(from (K \H)× Γk to K × Γk × {←,→}k)

. . . t t a b a b b a t t . . .

. . . t t a a b a b t t . . .

. . . t t 1 1 0 t t . . .

control

q0

q1

q2

q3

q4

Multiple tapes

Theorem

Every k-tape, k > 1, Turing Machine M = (K,Σ,Γ, δ, s,H) has an
equivalent single tape Turing Machine M ′ = (K ′,Σ′,Γ′, δ′, s′, H ′).

If M halts on input w ∈ Σ∗ after t steps, then M ′ halts on input w after
O(t(|w|+ t)) steps.

Sketch of the proof:

I M ′ simulates M in a single tape

I # is used as delimiter to separate the contents of different tapes

I dotted symbols are used to indicate the actual position of the head
of each tape

I for each symbol σ ∈ Γ, add both σ and
•
σ in Γ′

I use the same set of halting states

Multiple tapes

Sketch of the proof:

. . . t t a b t t . . .

. . . t t a a b a t t . . .

. . . t t 1 1 0 t t . . .

M

. . . t # 1
•
1 0 # a a •

b a # •
a b # t . . .

M ′

Multiple tapes

Sketch of the proof:

M ′ = “On input w = w1w2 . . . wn:

1. Format the tape to represent the k tapes:

#
•
w1w2 . . . wn#

•
t#

•
t# . . .#

2. For each step that M performs, scan the tape from left to right to
determine the symbols under the virtual heads. Then, do a second
scan to update the tapes according to the transition function of M .

3. If at any point there is a need to move a virtual head outside the
area marked for the corresponding tape, then shift right the contents
of all tapes succeeding.”

Number of steps for M ′:

1. O(|w|)
2. & 3. O(|w|+ t) per step ⇒ O(t(|w|+ t)) in total

I size of the tape no more than O(|w|+ t)

Multiple tapes

Sketch of the proof:

M ′ = “On input w = w1w2 . . . wn:

1. Format the tape to represent the k tapes:

#
•
w1w2 . . . wn#

•
t#

•
t# . . .#

2. For each step that M performs, scan the tape from left to right to
determine the symbols under the virtual heads. Then, do a second
scan to update the tapes according to the transition function of M .

3. If at any point there is a need to move a virtual head outside the
area marked for the corresponding tape, then shift right the contents
of all tapes succeeding.”

Number of steps for M ′:

1. O(|w|)
2. & 3. O(|w|+ t) per step ⇒ O(t(|w|+ t)) in total

I size of the tape no more than O(|w|+ t)

Multiple tapes

Sketch of the proof:

M ′ = “On input w = w1w2 . . . wn:

1. Format the tape to represent the k tapes:

#
•
w1w2 . . . wn#

•
t#

•
t# . . .#

2. For each step that M performs, scan the tape from left to right to
determine the symbols under the virtual heads. Then, do a second
scan to update the tapes according to the transition function of M .

3. If at any point there is a need to move a virtual head outside the
area marked for the corresponding tape, then shift right the contents
of all tapes succeeding.”

Number of steps for M ′:

1. O(|w|)
2. & 3. O(|w|+ t) per step ⇒ O(t(|w|+ t)) in total

I size of the tape no more than O(|w|+ t)

Multiple tapes: conclusion

The multiple tape Turing Machine is not more powerful !!

... but it is more easy to construct and to understand !

... and it can be used to simulate functions in an easier way
(a function can use one or more not used tapes)

Multiple tapes: conclusion

The multiple tape Turing Machine is not more powerful !!

... but it is more easy to construct and to understand !

... and it can be used to simulate functions in an easier way
(a function can use one or more not used tapes)

Multiple tapes: conclusion

The multiple tape Turing Machine is not more powerful !!

... but it is more easy to construct and to understand !

... and it can be used to simulate functions in an easier way
(a function can use one or more not used tapes)

Multiple tapes: example with k = 2 tapes

> R1,2 σ2 L2
t R

1,2 σ1
σ1 6= t

t1

σ2 6= t

I extend notation:
I R1,2: move the head of both tapes on the right
I σ2 (as a state): write in the tape 2 the symbol σ
I σ2 (as a label): if the head of tape 2 reads the symbol σ

tape 1 tape 2
initially tw t
after (1) twt twt
after (2) twt twt
at the end tw t wt twt

transforms w to w t w

Multiple tapes: example with k = 2 tapes

> R1,2 σ2 L2
t R

1,2 σ1
σ1 6= t

t1

σ2 6= t

I extend notation:
I R1,2: move the head of both tapes on the right
I σ2 (as a state): write in the tape 2 the symbol σ
I σ2 (as a label): if the head of tape 2 reads the symbol σ

tape 1 tape 2
initially tw t
after (1) twt twt
after (2) twt twt
at the end tw t wt twt

transforms w to w t w

Multiple tapes: example with k = 2 tapes

> R1,2 σ2 L2
t R

1,2 σ1
σ1 6= t

t1

σ2 6= t

(1)

I extend notation:
I R1,2: move the head of both tapes on the right
I σ2 (as a state): write in the tape 2 the symbol σ
I σ2 (as a label): if the head of tape 2 reads the symbol σ

tape 1 tape 2
initially tw t
after (1)

twt twt
after (2) twt twt
at the end tw t wt twt

transforms w to w t w

Multiple tapes: example with k = 2 tapes

> R1,2 σ2 L2
t R

1,2 σ1
σ1 6= t

t1

σ2 6= t

(1) (2)

I extend notation:
I R1,2: move the head of both tapes on the right
I σ2 (as a state): write in the tape 2 the symbol σ
I σ2 (as a label): if the head of tape 2 reads the symbol σ

tape 1 tape 2
initially tw t
after (1) twt twt
after (2)

twt twt
at the end tw t wt twt

transforms w to w t w

Multiple tapes: example with k = 2 tapes

> R1,2 σ2 L2
t R

1,2 σ1
σ1 6= t

t1

σ2 6= t

(1) (2)

I extend notation:
I R1,2: move the head of both tapes on the right
I σ2 (as a state): write in the tape 2 the symbol σ
I σ2 (as a label): if the head of tape 2 reads the symbol σ

tape 1 tape 2
initially tw t
after (1) twt twt
after (2) twt twt
at the end

tw t wt twt

transforms w to w t w

Multiple tapes: example with k = 2 tapes

> R1,2 σ2 L2
t R

1,2 σ1
σ1 6= t

t1

σ2 6= t

(1) (2)

I extend notation:
I R1,2: move the head of both tapes on the right
I σ2 (as a state): write in the tape 2 the symbol σ
I σ2 (as a label): if the head of tape 2 reads the symbol σ

tape 1 tape 2
initially tw t
after (1) twt twt
after (2) twt twt
at the end tw t wt twt

transforms w to w t w

Multiple tapes: example with k = 2 tapes

> R1,2 σ2 L2
t R

1,2 σ1
σ1 6= t

t1

σ2 6= t

(1) (2)

I extend notation:
I R1,2: move the head of both tapes on the right
I σ2 (as a state): write in the tape 2 the symbol σ
I σ2 (as a label): if the head of tape 2 reads the symbol σ

tape 1 tape 2
initially tw t
after (1) twt twt
after (2) twt twt
at the end tw t wt twt

transforms w to w t w

Multiple heads

Definition (informal)

I at each step all heads can read/write/move

I we need a convention if two heads try writing in the same place

Theorem

Every multiple head Turing Machine M has an equivalent single head
Turing Machine M ′.

The simulation by M ′ of M on an input w which leads to a halting state
takes time quadratic to the size of the input |w| and the number of steps
t that M performs.

Multiple heads

Definition (informal)

I at each step all heads can read/write/move

I we need a convention if two heads try writing in the same place

Theorem

Every multiple head Turing Machine M has an equivalent single head
Turing Machine M ′.

The simulation by M ′ of M on an input w which leads to a halting state
takes time quadratic to the size of the input |w| and the number of steps
t that M performs.

Proof (sketch):

Multiple heads

Definition (informal)

I at each step all heads can read/write/move

I we need a convention if two heads try writing in the same place

Theorem

Every multiple head Turing Machine M has an equivalent single head
Turing Machine M ′.

The simulation by M ′ of M on an input w which leads to a halting state
takes time quadratic to the size of the input |w| and the number of steps
t that M performs.

Proof (sketch):

I scan the tape twice

1 find the symbols at the head positions (which transition to follow?)
2 write/move the heads according to the transition

I same arguments as before for the number of steps

Multiple heads

Definition (informal)

I at each step all heads can read/write/move

I we need a convention if two heads try writing in the same place

Theorem

Every multiple head Turing Machine M has an equivalent single head
Turing Machine M ′.

The simulation by M ′ of M on an input w which leads to a halting state
takes time quadratic to the size of the input |w| and the number of steps
t that M performs.

Proof (sketch):

I scan the tape twice

1 find the symbols at the head positions (which transition to follow?)
2 write/move the heads according to the transition

I same arguments as before for the number of steps

Multiple heads

Definition (informal)

I at each step all heads can read/write/move

I we need a convention if two heads try writing in the same place

Theorem

Every multiple head Turing Machine M has an equivalent single head
Turing Machine M ′.

The simulation by M ′ of M on an input w which leads to a halting state
takes time quadratic to the size of the input |w| and the number of steps
t that M performs.

Proof (another one):

Multiple heads

Definition (informal)

I at each step all heads can read/write/move

I we need a convention if two heads try writing in the same place

Theorem

Every multiple head Turing Machine M has an equivalent single head
Turing Machine M ′.

The simulation by M ′ of M on an input w which leads to a halting state
takes time quadratic to the size of the input |w| and the number of steps
t that M performs.

Proof (another one):
. . . t m y t i n p u t t . . .

∧
∧

∧

Multiple heads: example

Give a Machine Turing with two heads that transforms the input tw to
tw t w.

I extend notation:
I σ, σ, σ: the position of the 1st, 2nd and both heads, respectively
I R1,2: move both heads on the right
I σ2 (as a state): write in the position of head 2 the symbol σ
I σ2 (as a label): if the head 2 reads the symbol σ

> R2
tR

1,2 σ2

L1,2
t L2

t

σ1 6= t

t1

Multiple heads: example

Give a Machine Turing with two heads that transforms the input tw to
tw t w.

I extend notation:
I σ, σ, σ: the position of the 1st, 2nd and both heads, respectively
I R1,2: move both heads on the right
I σ2 (as a state): write in the position of head 2 the symbol σ
I σ2 (as a label): if the head 2 reads the symbol σ

> R2
tR

1,2 σ2

L1,2
t L2

t

σ1 6= t

t1

Unbounded tapes

What happens if the tape is bounded in one direction?

Theorem

Every two-direction unbounded tape Turing Machine M has an
equivalent single-direction unbounded tape Turing Machine.

Unbounded tapes

What happens if the tape is bounded in one direction?

Theorem

Every two-direction unbounded tape Turing Machine M has an
equivalent single-direction unbounded tape Turing Machine.

Two-dimensional tape

Definition (informal)

I move the head left/right/up/down

Why?

I for example, to represent more easily two-dimensional matrices

Theorem

Every two-dimensional tape Turing Machine M has an equivalent
single-dimensional tape Turing Machine M ′.

The simulation by M ′ of M on an input w which leads to a halting state
takes time polynomial to the size of the input |w| and the number of
steps t that M performs.

Proof (sketch):

I use a multiple tape Turing Machine

I each tape corresponds to one line of the two-dimensional memory

Two-dimensional tape

Definition (informal)

I move the head left/right/up/down

Why?

I for example, to represent more easily two-dimensional matrices

Theorem

Every two-dimensional tape Turing Machine M has an equivalent
single-dimensional tape Turing Machine M ′.

The simulation by M ′ of M on an input w which leads to a halting state
takes time polynomial to the size of the input |w| and the number of
steps t that M performs.

Proof (sketch):

I use a multiple tape Turing Machine

I each tape corresponds to one line of the two-dimensional memory

Two-dimensional tape

Definition (informal)

I move the head left/right/up/down

Why?

I for example, to represent more easily two-dimensional matrices

Theorem

Every two-dimensional tape Turing Machine M has an equivalent
single-dimensional tape Turing Machine M ′.

The simulation by M ′ of M on an input w which leads to a halting state
takes time polynomial to the size of the input |w| and the number of
steps t that M performs.

Proof (sketch):

I use a multiple tape Turing Machine

I each tape corresponds to one line of the two-dimensional memory

Two-dimensional tape

Definition (informal)

I move the head left/right/up/down

Why?

I for example, to represent more easily two-dimensional matrices

Theorem

Every two-dimensional tape Turing Machine M has an equivalent
single-dimensional tape Turing Machine M ′.

The simulation by M ′ of M on an input w which leads to a halting state
takes time polynomial to the size of the input |w| and the number of
steps t that M performs.

Proof (sketch):

I use a multiple tape Turing Machine

I each tape corresponds to one line of the two-dimensional memory

Two-dimensional tape

Definition (informal)

I move the head left/right/up/down

Why?

I for example, to represent more easily two-dimensional matrices

Theorem

Every two-dimensional tape Turing Machine M has an equivalent
single-dimensional tape Turing Machine M ′.

The simulation by M ′ of M on an input w which leads to a halting state
takes time polynomial to the size of the input |w| and the number of
steps t that M performs.

Proof (sketch):

I use a multiple tape Turing Machine

I each tape corresponds to one line of the two-dimensional memory

Discussion

I We can even combine the presented extensions and still not get a
stronger model

I Observation: a computation in the prototype Turing Machine needs
a number of steps which is bounded by a polynomial of the size of
the input and of the number steps in any of the extended model

Discussion

I We can even combine the presented extensions and still not get a
stronger model

I Observation: a computation in the prototype Turing Machine needs
a number of steps which is bounded by a polynomial of the size of
the input and of the number steps in any of the extended model

