Fundamental Computer Science Sequence 1: Turing Machines

Denis Trystram (inspired by Giorgio Lucarelli)

MoSIG1, 2020

Classes

 30 hours in total (half Theory, half Exercises/Practice).

- ► 5 topics
 - 1. Universal Computing Model: the Turing Machine
 - 2. Alternative model: λ -Calculus
 - 3. NP-completeness
 - 4. Approximation Theory
 - 5. Introduction to Quantum Computing

Evaluation

- ► Exam: 70%
- ► Reading session: 30%

Books

- ► M. Garey and D. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, Freeman
- Harry Lewis and Christos Papadimitriou, *Elements of the Theory of Computation*, Prentice-Hall
- ► Christos Papadimitriou, Computational Complexity, Pearson
- S. Arora and B. Barak, Computational complexity a modern approach, Cambridge
- Vijay Vazirani, Approximation Algorithms, Springer
- ► Arnold Rosenberg, The pillars of Computation Theory, Springer

Objective of the session

 $\label{eq:present} Present \ (and \ discuss) \ the \ universal \ computational \ model \ of \ Turing \ machine.$

Preliminary

What is an *Algorithm*?

Preliminary

What is an *Algorithm*?

The first question is to discuss what can be calculated by a Computer.

Informally: this is a step-by-step procedure composed that solves a *problem*.

Preliminary

What is an Algorithm?

The first question is to discuss what can be calculated by a Computer.

Informally: this is a step-by-step procedure composed that solves a *problem*.

Desired properties

- clearly defined steps (formalization)
- efficiency (complexity how many steps?)
- termination

Short History

• Etymology:

- Al-Khwārizmī a Persian mathematician of the 9th century
- $\alpha \rho \iota \theta \mu \delta \varsigma$ the Greek word that means "number"
- Euclid's algorithm for computing the greatest common divisor (3rd century BC)
- ► End of 19th century beginning of 20th century: mathematical formalizations (proof systems, axioms, etc). Is there an algorithm for any problem?
- Entscheidungsproblem (a challenge proposed by David Hilbert 1928): create an algorithm which is able to decide if a mathematical statement is true in a finite number of operations
- Church-Turing thesis (1930's): provides a formal definition of an algorithm (λ-calculus, Turing machine) and show that a solution to Entscheidungsproblem does not exist

alphabet: a finite set of symbols

• examples: Roman alphabet $\{a, b, \dots, z\}$, binary alphabet $\{0, 1\}$

alphabet: a finite set of symbols

• examples: Roman alphabet $\{a, b, \dots, z\}$, binary alphabet $\{0, 1\}$

string: a finite sequence of symbols over an alphabet

- ► examples: *science*, 0011101
- \blacktriangleright ϵ : the empty string
- Σ^* : the set of all strings over an alphabet Σ (including ϵ)

alphabet: a finite set of symbols

• examples: Roman alphabet $\{a, b, \ldots, z\}$, binary alphabet $\{0, 1\}$

string: a finite sequence of symbols over an alphabet

- ► examples: *science*, 0011101
- \blacktriangleright ϵ : the empty string
- Σ^* : the set of all strings over an alphabet Σ (including ϵ)

language: a set strings over an alphabet Σ (i.e., a subset of Σ^*)

- examples: \emptyset , Σ , Σ^*
- more examples:

$$\begin{split} L &= \{w \in \Sigma^* : w \text{ has some property } P\} \\ L &= \{w \in \Sigma^* : w = w^R\} \quad (w^R = \text{reverse of } w) \\ L &= \{w \in \{0, 1\}^* : w \text{ has an equal number of 0's and 1's} \end{split}$$

alphabet: a finite set of symbols

• examples: Roman alphabet $\{a, b, \dots, z\}$, binary alphabet $\{0, 1\}$

string: a finite sequence of symbols over an alphabet

- ► examples: *science*, 0011101
- \blacktriangleright ϵ : the empty string
- Σ^* : the set of all strings over an alphabet Σ (including ϵ)

language: a set strings over an alphabet Σ (i.e., a subset of Σ^*)

- examples: \emptyset , Σ , Σ^*
- more examples:

$$\begin{split} &L = \{w \in \Sigma^* : w \text{ has some property } P\} \\ &L = \{w \in \Sigma^* : w = w^R\} \quad (w^R = \text{reverse of } w) \\ &L = \{w \in \{0, 1\}^* : w \text{ has an equal number of 0's and 1's}\} \\ &L = \{w \in \{1, 2, \dots, n\} : w \text{ is a permutation of } \{1, 2, \dots, n\} \\ & \text{ corresponding to a Hamiltonian Path}\} \end{split}$$

Define first what is a *problem*. An id, the list of input (with their coding) and a question.

Define first what is a *problem*.

An id, the list of input (with their coding) and a question.

Decision problem: a problem that can be posed as an yes/no question.

Define first what is a *problem*.

An id, the list of input (with their coding) and a question.

Decision problem: a problem that can be posed as an yes/no question.

example:
 Prime
 Given a integer n
 ls n a prime?

Define first what is a *problem*.

An id, the list of input (with their coding) and a question.

Decision problem: a problem that can be posed as an yes/no question.

- example:
 Prime
 Given a integer n
 Is n a prime?
- ► another example:
 - ► Given a graph G = (V, E), is there a permutation π of the vertex set such that $(v_{\pi(i)}, v_{\pi(i+1)}) \in E$ for all $i, 1 \le i \le |V-1|$?

Define first what is a *problem*.

An id, the list of input (with their coding) and a question.

Decision problem: a problem that can be posed as an yes/no question.

- example:
 Prime
 Given a integer n
 Is n a prime?
- ► another example:
 - ▶ Given a graph G = (V, E), is there a permutation π of the vertex set such that $(v_{\pi(i)}, v_{\pi(i+1)}) \in E$ for all $i, 1 \leq i \leq |V 1|$? (Hamiltonian Path)

Beyond decision problems

Optimization: a problem of searching for the best answer

Beyond decision problems

Optimization: a problem of searching for the best answer

▶ example: Given a graph G = (V, E), two vertices $s, t \in V$ and an integer distance d(e) for each $e \in E$, find the path p between s and t such that the sum of distances of the edges in p is minimized.

Optimization: a problem of searching for the best answer

- ▶ example: Given a graph G = (V, E), two vertices $s, t \in V$ and an integer distance d(e) for each $e \in E$, find the path p between s and t such that the sum of distances of the edges in p is minimized.
- ▶ decision version: Given a graph G = (V, E), two vertices $s, t \in V$, an integer distance d(e) for each $e \in E$ and an integer D, is there a path p between s and t such that the sum of distances of the edges in p is at most D?

Observation 1:

In most of these lectures we will deal with decision problems

Observation 1:

In most of these lectures we will deal with decision problems

Observation 2:

A decision problem is defined by the input and the yes/no question

- examples of input:
 - Given a set of numbers $A = \{a_1, a_2, \dots, a_n\}$
 - Given a graph G = (V, E)
 - ▶ Given a graph G = (V, E) and a positive weight w(e) for each $e \in E$

Observation 1:

In most of these lectures we will deal with decision problems

Observation 2:

A decision problem is defined by the input and the yes/no question

- examples of input:
 - Given a set of numbers $A = \{a_1, a_2, \dots, a_n\}$
 - Given a graph G = (V, E)
 - \blacktriangleright Given a graph G=(V,E) and a positive weight w(e) for each $e\in E$
- \blacktriangleright < I >: string encoding of the input
 - \blacktriangleright < a_1, a_2, \ldots, a_n >
 - < adjacency matrix of G >
 - < adjacency matrix of $G, w(e) \ \forall e \in E >$

Observation 1:

In most of these lectures we will deal with decision problems

Observation 2:

A decision problem is defined by the input and the yes/no question

- examples of input:
 - Given a set of numbers $A = \{a_1, a_2, \dots, a_n\}$
 - Given a graph G = (V, E)
 - \blacktriangleright Given a graph G=(V,E) and a positive weight w(e) for each $e\in E$
- \blacktriangleright < I >: string encoding of the input
 - \blacktriangleright < a_1, a_2, \ldots, a_n >
 - < adjacency matrix of G >
 - < adjacency matrix of $G, w(e) \ \forall e \in E >$
- |I|: size of the input (in binary)
 - $\blacktriangleright \log_2 a_1 + \log_2 a_2 + \ldots \log_2 a_n$
 - $|V|^2$
 - $\bullet |V|^2 + \sum_{e \in E} \log_2 w(e)$

Turing machine

memory: an infinite tape

- initially, it contains the input string
- move the head left or right
- read and/or write to current cell
- control states
 - finite number of them
 - one current state
- At each step:
 - move from state to state
 - read or write or move Left or move Right in the tape

Turing machine: formal definition

A Turing Machine (M) is a six-tuple $(K, \Sigma, \Gamma, \delta, s, H)$, where

- K is a finite set of states
- $\blacktriangleright\ \Sigma$ is the input alphabet not containing the blank symbol \sqcup
- $\blacktriangleright\ \Gamma$ is the tape alphabet, where $\sqcup\in\Gamma$ and $\Sigma\subseteq\Gamma$
- $s \in K$: the initial state
- $H \subseteq K$: the set of halting states
- ► δ : the transition function from $(K \setminus H) \times \Gamma$ to $K \times (\Gamma \cup \{\leftarrow, \rightarrow\})$

Turing machine: formal definition

A Turing Machine (M) is a six-tuple $(K, \Sigma, \Gamma, \delta, s, H)$, where

- K is a finite set of states
- $\blacktriangleright\ \Sigma$ is the input alphabet not containing the blank symbol \sqcup
- $\blacktriangleright\ \Gamma$ is the tape alphabet, where $\sqcup\in\Gamma$ and $\Sigma\subseteq\Gamma$
- $s \in K$: the initial state
- $H \subseteq K$: the set of halting states
- δ : the transition function from $(K \setminus H) \times \Gamma$ to $K \times (\Gamma \cup \{\leftarrow, \rightarrow\})$

In general, $\delta(q,a)=(p,b)$ means that when M is in the state q and reads a in the tape, it goes to the state p and

- if $b \in \Sigma$, writes b in the place of a
- if $b \in \{\leftarrow, \rightarrow\}$, moves the head either Left or Right

q	σ	$\delta(q,\sigma)$
q_0	a	(q_1,\sqcup)
q_0	\Box	(h,\sqcup)
q_1	a	(q_0, a)
q_1	\Box	(q_0, \rightarrow)

q	σ	$\delta(q,\sigma)$
q_0	a	(q_1,\sqcup)
q_0	\Box	(h,\sqcup)
q_1	a	(q_0, a)
q_1	\Box	(q_0, \rightarrow)

 $(q_0, \underline{a}aa)$

Consider the Turing Machine $M = (K, \Sigma, \Gamma, \delta, s, H)$ where $K = \{q_0, q_1, h\}, \quad \Sigma = \{a\}, \quad \Gamma = \{a, \sqcup\}, \quad s = q_0, \quad H = \{h\},$ and δ is given by the table. How does M proceed?

q	σ	$\delta(q,\sigma)$
q_0	a	(q_1,\sqcup)
q_0	\Box	(h,\sqcup)
q_1	a	(q_0, a)
q_1	\Box	(q_0, \rightarrow)

 $(q_0,\underline{a}aa) \vdash_M (q_1,\underline{\sqcup}aa)$

Consider the Turing Machine $M = (K, \Sigma, \Gamma, \delta, s, H)$ where $K = \{q_0, q_1, h\}, \quad \Sigma = \{a\}, \quad \Gamma = \{a, \sqcup\}, \quad s = q_0, \quad H = \{h\},$ and δ is given by the table. How does M proceed?

 $(q_0,\underline{a}aa) \vdash_M (q_1,\underline{\sqcup}aa) \vdash_M (q_0,\underline{\sqcup}\underline{a}a)$

$$\begin{array}{rcl} (q_0,\underline{a}aa) & \vdash_M & (q_1,\underline{\sqcup}aa) & \vdash_M & (q_0,\underline{\sqcup}\underline{a}a) \\ & \vdash_M & (q_1,\underline{\sqcup}\underline{\sqcup}a) \end{array}$$

$$\begin{array}{ccc} (q_0,\underline{a}aa) & \vdash_M & (q_1,\underline{\sqcup}aa) & \vdash_M & (q_0,\underline{\sqcup}\underline{a}a) \\ & \vdash_M & (q_1,\underline{\sqcup}\underline{\sqcup}a) & \vdash_M & (q_0,\underline{\sqcup} \perp \underline{a}) \end{array}$$

$$\begin{array}{cccc} (q_0,\underline{a}aa) & \vdash_M & (q_1,\underline{\sqcup}aa) \vdash_M & (q_0,\underline{\sqcup}\underline{a}a) \\ & \vdash_M & (q_1,\underline{\sqcup}\underline{\sqcup}a) \vdash_M & (q_0,\underline{\sqcup}\underline{\sqcup}\underline{a}) \\ & \vdash_M & (q_1,\underline{\sqcup}\underline{\sqcup}\underline{\sqcup}) \end{array}$$

$$\begin{array}{cccc} (q_0,\underline{a}aa) & \vdash_M & (q_1,\underline{\sqcup}aa) \vdash_M & (q_0,\underline{\sqcup}\underline{a}a) \\ & \vdash_M & (q_1,\underline{\sqcup}\underline{\sqcup}a) \vdash_M & (q_0,\underline{\sqcup}\underline{\sqcup}\underline{a}) \\ & \vdash_M & (q_1,\underline{\sqcup}\underline{\sqcup}\underline{\sqcup}) \vdash_M & (q_0,\underline{\sqcup}\underline{\sqcup}\underline{\sqcup}\underline{\sqcup}) \end{array}$$

$$\begin{array}{rcl} (q_0,\underline{a}aa) & \vdash_M & (q_1,\underline{\sqcup}aa) \vdash_M & (q_0,\underline{\sqcup}\underline{a}a) \\ & \vdash_M & (q_1,\underline{\sqcup}\underline{\sqcup}a) \vdash_M & (q_0,\underline{\sqcup}\underline{\sqcup}\underline{a}) \\ & \vdash_M & (q_1,\underline{\sqcup}\underline{\sqcup}\underline{\sqcup}) \vdash_M & (q_0,\underline{\sqcup}\underline{\sqcup}\underline{\sqcup}\underline{\sqcup}) \\ & \vdash_M & (h,\underline{\sqcup}\underline{\sqcup}\underline{\sqcup}) \end{array}$$
Definition

A configuration of a Turing Machine $M = (K, \Sigma, \Gamma, \delta, s, H)$ is a member of $K \times \Gamma^* \times \Gamma^*((\Gamma \setminus \{\sqcup\}) \cup \{\epsilon\})$.

- ▶ informally: a triplet describing
 - the current state
 - the contents of the tape on the left of the head (including head's position)
 - the contents of the tape on the right of the head

Definition

A configuration of a Turing Machine $M = (K, \Sigma, \Gamma, \delta, s, H)$ is a member of $K \times \Gamma^* \times \Gamma^*((\Gamma \setminus \{\sqcup\}) \cup \{\epsilon\})$.

- ▶ informally: a triplet describing
 - the current state
 - the contents of the tape on the left of the head (including head's position)
 - the contents of the tape on the right of the head

• example: $(q_1, \sqcup a, a)$ or simply $(q_1, \sqcup \underline{a}a)$ or simply $(q_1, \underline{a}a)$

Definition

A configuration of a Turing Machine $M = (K, \Sigma, \Gamma, \delta, s, H)$ is a member of $K \times \Gamma^* \times \Gamma^*((\Gamma \setminus \{\sqcup\}) \cup \{\epsilon\})$.

- ▶ informally: a triplet describing
 - the current state
 - the contents of the tape on the left of the head (including head's position)
 - the contents of the tape on the right of the head
- example: $(q_1, \sqcup a, a)$ or simply $(q_1, \sqcup \underline{a}a)$ or simply $(q_1, \underline{a}a)$

Initial configuration: $(s,\underline{a}w)$ where $M = (K, \Sigma, \Gamma, \delta, s, H)$ is a Turing Machine, $a \in \Sigma$, $w \in \Sigma^*$ and aw is the *input string*

Definition

A configuration of a Turing Machine $M = (K, \Sigma, \Gamma, \delta, s, H)$ is a member of $K \times \Gamma^* \times \Gamma^*((\Gamma \setminus \{\sqcup\}) \cup \{\epsilon\})$.

- ▶ informally: a triplet describing
 - the current state
 - the contents of the tape on the left of the head (including head's position)
 - the contents of the tape on the right of the head
- example: $(q_1, \sqcup a, a)$ or simply $(q_1, \sqcup \underline{a}a)$ or simply $(q_1, \underline{a}a)$

Initial configuration: $(s,\underline{a}w)$ where $M = (K, \Sigma, \Gamma, \delta, s, H)$ is a Turing Machine, $a \in \Sigma$, $w \in \Sigma^*$ and aw is the *input string*

Halted configuration: a configuration whose state belongs to H

 $\blacktriangleright \text{ example: } (h, \sqcup \sqcup \sqcup \sqcup, \epsilon) \text{ or simply } (h, \sqcup \sqcup \sqcup \sqcup) \text{ or simply } (h, \underline{\sqcup})$

Definition

Consider a Turing Machine M and two configurations C_1 and C_2 of M. If M can go from C_1 to C_2 in a *single step*, then we write

 $C_1 \vdash_M C_2$

Definition

Consider a Turing Machine M and two configurations C_1 and C_2 of M. If M can go from C_1 to C_2 in a *single step*, then we write

 $C_1 \vdash_M C_2$

Definition

Consider a Turing Machine M and two configurations C_1 and C_2 of M. If M can go from C_1 to C_2 using a *sequence* of configurations, then we say that C_1 yields C_2 and we write

 $C_1 \vdash^*_M C_2$

Definition

Consider a Turing Machine M and two configurations C_1 and C_2 of M. If M can go from C_1 to C_2 in a *single step*, then we write

 $C_1 \vdash_M C_2$

Definition

Consider a Turing Machine M and two configurations C_1 and C_2 of M. If M can go from C_1 to C_2 using a *sequence* of configurations, then we say that C_1 yields C_2 and we write

 $C_1 \vdash^*_M C_2$

Definition

A computation of a Turing Machine M is a sequence of configurations C_0, C_1, \ldots, C_n , for some $n \ge 0$, such that

$$C_0 \vdash_M C_1 \vdash_M C_2 \vdash_M \ldots \vdash_M C_n$$

The **length** of the computation is n (or it performs n steps).

Determinism or not?

Definition

Implicitly, the transition δ is deterministic.

Determinism or not?

Definition

Implicitly, the transition δ is deterministic.

Non-deterministic Turing Machine

What happens is several outputs are allowed at each step?

The choice is among k fixed possibilities, random, round-robin, etc.

Determinism or not?

Definition

Implicitly, the transition δ is deterministic.

Non-deterministic Turing Machine

What happens is several outputs are allowed at each step?

The choice is among k fixed possibilities, random, round-robin, etc.

This point will be detailed in the next lecture.

A more general notation for Turing Machines

Turing Machine $L_a = (K, \Sigma, \Gamma, \delta, s, H)$ where: $-K = \{q_0, q_1\}$ $-a \in \Sigma$ $-s = q_0$ $-H = \{q_1\}$

A more general notation for Turing Machines

Turing Machine $L_a = (K, \Sigma, \Gamma, \delta, s, H)$ where: $-K = \{q_0, q_1\}$ $-a \in \Sigma$ $-s = q_0$ $-H = \{q_1\}$

Define similar simple Turing Machines

• examples: L, R, L_a , R_a , L^2 , R^2 , a, \sqcup , etc

A more general notation for Turing Machines

Turing Machine $L_a = (K, \Sigma, \Gamma, \delta, s, H)$ where: $-K = \{q_0, q_1\}$ $-a \in \Sigma$ $-s = q_0$ $-H = \{q_1\}$

Define similar simple Turing Machines

• examples: L, R, L_a , R_a , L^2 , R^2 , a, \sqcup , etc

► Combine simple machines to construct more complicated ones

1. Run M_1

 $\begin{array}{c}
M_3 \\
\uparrow b \\
M_1 \xrightarrow{a} M_2
\end{array}$

- 2. If M_1 finishes and the head reads a then run M_2 starting from this a
- 3. Else run M_3 starting from this b

What is the goal of the following Turing Machine?

$$\begin{array}{c} & & & \\ & & & \\ \searrow L_{\sqcup} \rightarrow R \xrightarrow{a \neq \sqcup} \sqcup R_{\sqcup}^{2} a L_{\sqcup}^{2} a \\ & & & \\ & & \downarrow \sqcup \\ & & \\ & & \\ R_{\sqcup} \end{array}$$

What is the goal of the following Turing Machine?

$$> L_{\sqcup} \longrightarrow \underset{R_{\sqcup}}{\overset{a \neq \sqcup}{\longrightarrow}} \sqcup R_{\sqcup}^{2} a L_{\sqcup}^{2} a$$

 $(\sqcup abc \underline{\sqcup}) \vdash^*_M (\underline{\sqcup} abc \sqcup) \qquad (L_{\sqcup})$

What is the goal of the following Turing Machine?

$$\begin{array}{c} & \swarrow \\ & \downarrow \\ > L_{\sqcup} \rightarrow R \xrightarrow{a \neq \sqcup} \sqcup R_{\sqcup}^{2} a L_{\sqcup}^{2} a \\ & \downarrow \\ & \downarrow \\ & R_{\sqcup} \end{array}$$

What is the goal of the following Turing Machine?

$$\begin{array}{c} & \swarrow \\ & \downarrow \\ > L_{\sqcup} \rightarrow R \xrightarrow{a \neq \sqcup} \sqcup R_{\sqcup}^{2} a L_{\sqcup}^{2} a \\ & \downarrow \\ & \downarrow \\ & R_{\sqcup} \end{array}$$

 $\begin{array}{cccc} (\sqcup abc \sqcup) & \vdash_{M}^{*} & (\sqcup abc \sqcup) & & (L_{\sqcup}) \\ & \vdash_{M} & (\sqcup \underline{a}bc \sqcup) & & (R) \\ & \vdash_{M} & (\sqcup \underline{\sqcup}bc \sqcup) & & (\sqcup) \end{array}$

What is the goal of the following Turing Machine?

$$> L_{\sqcup} \longrightarrow \underset{R_{\sqcup}}{\overset{a \neq \sqcup}{\longrightarrow}} \sqcup R_{\sqcup}^{2} a L_{\sqcup}^{2} a$$

 $\begin{array}{cccc} (\sqcup abc \sqcup) & \vdash_{M}^{*} & (\sqcup abc \sqcup) & (L_{\sqcup}) \\ & \vdash_{M} & (\sqcup \underline{a}bc \sqcup) & (R) \\ & \vdash_{M} & (\sqcup \underline{\sqcup}bc \sqcup) & (\sqcup) \\ & \vdash_{M}^{*} & (\sqcup \sqcup bc \sqcup \underline{\sqcup}) & (R_{\sqcup}^{2}) \end{array}$

What is the goal of the following Turing Machine?

$$> L_{\sqcup} \longrightarrow R \xrightarrow{a \neq \sqcup} \sqcup R_{\sqcup}^{2} a L_{\sqcup}^{2} a$$
$$\downarrow \sqcup$$
$$R_{\sqcup}$$

$$\begin{array}{cccc} (\sqcup abc \sqcup) & \vdash_{M}^{*} & (\amalg abc \sqcup) & (L_{\sqcup}) \\ & \vdash_{M} & (\sqcup \underline{a}bc \sqcup) & (R) \\ & \vdash_{M} & (\sqcup \bigsqcup bc \sqcup) & (\sqcup) \\ & \vdash_{M}^{*} & (\sqcup \sqcup bc \sqcup \underline{\sqcup}) & (R_{\sqcup}^{2}) \\ & \vdash_{M} & (\sqcup \sqcup bc \sqcup \underline{a}) & (a) \end{array}$$

What is the goal of the following Turing Machine?

$$> L_{\sqcup} \longrightarrow \underset{R_{\sqcup}}{\overset{a \neq \sqcup}{\longrightarrow}} \sqcup R_{\sqcup}^{2} a L_{\sqcup}^{2} a$$

 $\begin{array}{cccc} (\sqcup abc \sqcup) & \vdash_{M}^{*} & (\amalg abc \sqcup) & (L_{\sqcup}) \\ & \vdash_{M} & (\sqcup \underline{a}bc \sqcup) & (R) \\ & \vdash_{M} & (\sqcup \underline{\sqcup}bc \sqcup) & (\sqcup) \\ & \vdash_{M}^{*} & (\sqcup \sqcup bc \sqcup \underline{\sqcup}) & (R_{\sqcup}^{2}) \\ & \vdash_{M} & (\sqcup \sqcup bc \sqcup \underline{a}) & (a) \\ & \vdash_{M}^{*} & (\sqcup \underline{\sqcup}bc \sqcup a) & (L_{\sqcup}^{2}) \end{array}$

What is the goal of the following Turing Machine?

$$> L_{\sqcup} \longrightarrow \underset{R_{\sqcup}}{\overset{a \neq \sqcup}{\longrightarrow}} \sqcup R_{\sqcup}^{2} a L_{\sqcup}^{2} a$$

- $\begin{array}{cccc} (\sqcup abc \sqcup) & \vdash_{M}^{*} & (\sqcup abc \sqcup) & (L_{\sqcup}) \\ & \vdash_{M} & (\sqcup \underline{a}bc \sqcup) & (R) \\ & \vdash_{M} & (\sqcup \underline{\sqcup}bc \sqcup) & (\sqcup) \end{array}$
 - $\vdash^*_M (\sqcup \sqcup bc \sqcup \underline{\sqcup}) (R_{\sqcup}^2)$
 - $\vdash_M (\sqcup \sqcup bc \sqcup \underline{a}) \quad (a)$
 - $\vdash^*_M \ (\sqcup \underline{\sqcup} bc \sqcup a) \ (L^2_{\sqcup})$
 - $\vdash_M \quad (\sqcup \underline{a} bc \sqcup a) \qquad (a)$

What is the goal of the following Turing Machine?

$$> L_{\sqcup} \longrightarrow \underset{R_{\sqcup}}{\overset{a \neq \sqcup}{\longrightarrow}} \sqcup R_{\sqcup}^{2} a L_{\sqcup}^{2} a$$

 $\begin{array}{ccc} (\sqcup abc \sqcup) & \vdash_M^* & (\sqcup abc \sqcup) & & (L_{\sqcup}) \\ & \vdash_M & (\sqcup \underline{a}bc \sqcup) & & (R) \end{array}$

$$\vdash_M (\sqcup \underline{\sqcup} bc \sqcup) \qquad (\sqcup)$$

$$\vdash_M^* \ (\sqcup \sqcup bc \sqcup \underline{\sqcup}) \ (R_{\sqcup}^2)$$

$$\vdash_M \quad (\sqcup \sqcup bc \sqcup \underline{a}) \quad (a)$$

$$\vdash_M^* (\sqcup \underline{\sqcup} bc \sqcup a) \qquad (L^2_{\sqcup})$$

$$\vdash_M (\sqcup \underline{a} bc \sqcup a) \qquad (a)$$

$$\vdash_M (\sqcup a\underline{b}c \sqcup a) \qquad (R)$$

What is the goal of the following Turing Machine?

$$> L_{\sqcup} \longrightarrow R \xrightarrow{a \neq \sqcup} \sqcup R_{\sqcup}^{2} a L_{\sqcup}^{2} a$$
$$\downarrow \sqcup R_{\sqcup}$$

$$\vdash_M (\sqcup \underline{\sqcup} bc \sqcup) \qquad (\sqcup)$$

$$\vdash^*_M \quad (\sqcup \sqcup bc \sqcup \underline{\sqcup}) \quad (R^2_{\sqcup})$$

$$\vdash_M \quad (\sqcup \sqcup bc \sqcup \underline{a}) \quad (a)$$

$$\vdash_M^* (\sqcup \underline{\sqcup} bc \sqcup a) \qquad (L^2_{\sqcup})$$

$$\vdash_M (\sqcup \underline{a} bc \sqcup a) \qquad (a)$$

$$\vdash_M (\sqcup a\underline{b}c \sqcup a) \qquad (R)$$

Solution:

transforms $\sqcup w \sqcup$ to $\sqcup w \sqcup w \sqcup$

- give an algorithmic description of how the Turing Machine works in finite and discrete steps
- ▶ what is allowed?

- give an algorithmic description of how the Turing Machine works in finite and discrete steps
- what is allowed? \rightarrow almost everything!!

- give an algorithmic description of how the Turing Machine works in finite and discrete steps
- what is allowed? \rightarrow almost everything!!

Example

M = "On input w:

- 1. scan the input from left to right to be sure that is member of $a^{\ast}b^{\ast}c^{\ast}$ and reject if not
- 2. find the leftmost a in the tape and if such an a does not exist, then
 - ▶ scan the input for a *c* and if such a *c* exists then *reject* else *accept*
- 3. replace a by \hat{a}
- 4. scan the input for the leftmost b and if such a b does not exist, then restore all b's (replace all \hat{b} by b) and goto 2
- 5. replace b by \hat{b}
- 6. scan to the right for the first c and if such a c does not exist, then reject
- 7. replace c by \hat{c} and goto 4"

- give an algorithmic description of how the Turing Machine works in finite and discrete steps
- what is allowed? \rightarrow almost everything!!

Example

$$L = \{a^i b^j c^k : i \times j = k\}$$

M = "On input w:

- 1. scan the input from left to right to be sure that is member of $a^{\ast}b^{\ast}c^{\ast}$ and reject if not
- 2. find the leftmost a in the tape and if such an a does not exist, then
 - ▶ scan the input for a *c* and if such a *c* exists then *reject* else *accept*
- 3. replace a by \hat{a}
- 4. scan the input for the leftmost b and if such a b does not exist, then restore all b's (replace all \hat{b} by b) and goto 2
- 5. replace b by \hat{b}
- 6. scan to the right for the first c and if such a c does not exist, then reject
- 7. replace c by \hat{c} and goto 4"

A language L is called **decidable** (or **Turing-decidable** or **recursive**) if there is a Turing Machine that decides it.

A language L is called **decidable** (or **Turing-decidable** or **recursive**) if there is a Turing Machine that decides it.

A language L is called **Turing-recognizable** (or **recursively enumerable**) if there is a Turing Machine that recognizes it.

Theorem

If a language L is decidable, then it is Turing-recognizable.

Theorem

If a language L is decidable, then it is Turing-recognizable.

Theorem

If a language L is decidable, then its complement \overline{L} is also.

Proof.

Theorem

If a language L is decidable, then it is Turing-recognizable.

Theorem

If a language L is decidable, then its complement \overline{L} is also.

Proof.

$$\delta'(q,a) = \left\{ \begin{array}{ll} n & \text{if } \delta(q,a) = y \\ y & \text{if } \delta(q,a) = n \\ \delta(q,a) & \text{otherwise} \end{array} \right.$$

$$(s, {\underline{\sqcup}} w) \vdash^*_M (h, {\underline{\sqcup}} y)$$

Then, y is the **output** of M on input w and is denoted by M(w).

$$(s, \underline{\sqcup} w) \vdash^*_M (h, \underline{\sqcup} y)$$

Then, y is the **output** of M on input w and is denoted by M(w).

Consider a function $f: \Sigma^* \to \Sigma^*$. We say that M computes the function f if M(w) = f(w) for all $w \in \Sigma^*$.

$$(s, \underline{\sqcup} w) \vdash^*_M (h, \underline{\sqcup} y)$$

Then, y is the **output** of M on input w and is denoted by M(w).

Consider a function $f: \Sigma^* \to \Sigma^*$. We say that M computes the function f if M(w) = f(w) for all $w \in \Sigma^*$.

A function f is called **decidable** (or **recursive**) if there is a Turing Machine that computes it.

$$(s, \underline{\sqcup} w) \vdash^*_M (h, \underline{\sqcup} y)$$

Then, y is the **output** of M on input w and is denoted by M(w).

Consider a function $f: \Sigma^* \to \Sigma^*$. We say that M computes the function f if M(w) = f(w) for all $w \in \Sigma^*$.

A function f is called **decidable** (or **recursive**) if there is a Turing Machine that computes it.

Example

The output with input $\sqcup 100010111$ is ...
Consider a Turing Machine $M = (K, \Sigma, \Gamma, \delta, s, \{h\})$ and a string $w \in \Sigma^*$. Suppose that M halts on input w and for some $y \in \Sigma^*$ we have

$$(s, \underline{\sqcup} w) \vdash^*_M (h, \underline{\sqcup} y)$$

Then, y is the **output** of M on input w and is denoted by M(w).

Consider a function $f: \Sigma^* \to \Sigma^*$. We say that M computes the function f if M(w) = f(w) for all $w \in \Sigma^*$.

A function f is called **decidable** (or **recursive**) if there is a Turing Machine that computes it.

Example

The output with input $\Box 100010111$ is ... $\Box 100011000$

Computes the function succ(n) = n + 1 in binary

We have already seen an extension:

- write in the tape and move left or right at the same time
- ► modify the definition of the transition function initial: from (K \ H) × Γ to K × (Γ ∪ {←, →}) extended: from (K \ H) × Γ to K × Γ × {←, →}

We have already seen an extension:

- write in the tape and move left or right at the same time
- ► modify the definition of the transition function initial: from (K \ H) × Γ to K × (Γ ∪ {←, →}) extended: from (K \ H) × Γ to K × Γ × {←, →}
- ▶ if the extended Turing Machine halts on input w after t steps, then the initial Turing Machine halts on input w after at most 2t steps

A k-tape Turing Machine (M) is a sextuple $(K, \Sigma, \Gamma, \delta, s, H)$, where K, Σ , Γ , s and H are as in the definition of the ordinary Turing Machine, and δ is a transition function

 $\text{from} \quad (K \setminus H) \times \Gamma^k \quad \text{ to } \quad K \times (\Gamma \cup \{\leftarrow, \rightarrow\})^k$

A k-tape Turing Machine (M) is a sextuple $(K, \Sigma, \Gamma, \delta, s, H)$, where K, Σ , Γ , s and H are as in the definition of the ordinary Turing Machine, and δ is a transition function

from $(K \setminus H) \times \Gamma^k$ to $K \times (\Gamma \cup \{\leftarrow, \rightarrow\})^k$ (from $(K \setminus H) \times \Gamma^k$ to $K \times \Gamma^k \times \{\leftarrow, \rightarrow\}^k$)

Theorem

Every k-tape, k > 1, Turing Machine $M = (K, \Sigma, \Gamma, \delta, s, H)$ has an equivalent single tape Turing Machine $M' = (K', \Sigma', \Gamma', \delta', s', H')$.

If M halts on input $w\in \Sigma^*$ after t steps, then M' halts on input w after O(t(|w|+t)) steps.

Sketch of the proof:

- M' simulates M in a single tape
- \blacktriangleright # is used as delimiter to separate the contents of different tapes
- dotted symbols are used to indicate the actual position of the head of each tape
 - ▶ for each symbol $\sigma \in \Gamma$, add both σ and $\overset{\bullet}{\sigma}$ in Γ'
- use the same set of halting states

M' = "On input $w = w_1 w_2 \dots w_n$:

1. Format the tape to represent the \boldsymbol{k} tapes:

 $#w_1w_2\dots w_n\# \stackrel{\bullet}{\sqcup} \# \stackrel{\bullet}{\sqcup} \#\dots \#$

2. For each step that M performs, scan the tape from left to right to determine the symbols under the virtual heads. Then, do a second scan to update the tapes according to the transition function of M.

M' = "On input $w = w_1 w_2 \dots w_n$:

1. Format the tape to represent the \boldsymbol{k} tapes:

 $#w_1w_2\dots w_n\# \stackrel{\bullet}{\sqcup} \# \stackrel{\bullet}{\sqcup} \#\dots \#$

- 2. For each step that M performs, scan the tape from left to right to determine the symbols under the virtual heads. Then, do a second scan to update the tapes according to the transition function of M.
- If at any point there is a need to move a virtual head outside the area marked for the corresponding tape, then shift right the contents of all tapes succeeding."

M' = "On input $w = w_1 w_2 \dots w_n$:

1. Format the tape to represent the \boldsymbol{k} tapes:

 $#w_1w_2\dots w_n\# \stackrel{\bullet}{\sqcup} \# \stackrel{\bullet}{\sqcup} \#\dots \#$

- 2. For each step that M performs, scan the tape from left to right to determine the symbols under the virtual heads. Then, do a second scan to update the tapes according to the transition function of M.
- If at any point there is a need to move a virtual head outside the area marked for the corresponding tape, then shift right the contents of all tapes succeeding."

Number of steps for M':

1. O(|w|)

2. & 3. O(|w|+t) per step $\Rightarrow O(t(|w|+t))$ in total

• size of the tape no more than O(|w|+t)

The multiple tape Turing Machine is **not** more powerful !!

The multiple tape Turing Machine is **not** more powerful !!

... but it is more easy to construct and to understand !

The multiple tape Turing Machine is **not** more powerful !!

 \ldots but it is more easy to construct and to understand !

... and it can be used to simulate functions in an easier way (a function can use one or more not used tapes)

- $R^{1,2}$: move the head of both tapes on the right
- σ^2 (as a state): write in the tape 2 the symbol σ
- σ^2 (as a label): if the head of tape 2 reads the symbol σ

- ► R^{1,2}: move the head of both tapes on the right
- σ^2 (as a state): write in the tape 2 the symbol σ
- σ^2 (as a label): if the head of tape 2 reads the symbol σ

	tape 1	tape 2
initially	$\Box w$	
after (1)		

- ► R^{1,2}: move the head of both tapes on the right
- σ^2 (as a state): write in the tape 2 the symbol σ
- σ^2 (as a label): if the head of tape 2 reads the symbol σ

	tape 1	tape 2
initially	$\Box w$	
after (1)	$\sqcup w \sqcup$	$\sqcup w \sqcup$
after (2)		

- ► R^{1,2}: move the head of both tapes on the right
- σ^2 (as a state): write in the tape 2 the symbol σ
- σ^2 (as a label): if the head of tape 2 reads the symbol σ

	tape 1	tape 2
initially	$\Box w$	
after (1)	$\sqcup w \sqcup$	$\sqcup w \underline{\sqcup}$
after (2)	$\sqcup w \sqcup$	$\underline{\sqcup}w \sqcup$
at the end		

- ► R^{1,2}: move the head of both tapes on the right
- σ^2 (as a state): write in the tape 2 the symbol σ
- σ^2 (as a label): if the head of tape 2 reads the symbol σ

	tape 1	tape 2
initially	$\Box w$	
after (1)	$\sqcup w \sqcup$	$\Box w \underline{\Box}$
after (2)	$\sqcup w \sqcup$	$\sqcup w \sqcup$
at the end	$\sqcup w \sqcup w \sqcup$	$\sqcup w \underline{\sqcup}$

extend notation:

- $R^{1,2}$: move the head of both tapes on the right
- σ^2 (as a state): write in the tape 2 the symbol σ
- σ^2 (as a label): if the head of tape 2 reads the symbol σ

	tape 1	tape 2
initially	$\Box w$	
after (1)	$\sqcup w \sqcup$	$\sqcup w \underline{\sqcup}$
after (2)	$\sqcup w \sqcup$	$\sqcup w \sqcup$
at the end	$\sqcup w \sqcup w \underline{\sqcup}$	$\sqcup w \underline{\sqcup}$

transforms w to $w \sqcup w$

Definition (informal)

- ▶ at each step all heads can read/write/move
- ▶ we need a convention if two heads try writing in the same place

Definition (informal)

- ▶ at each step all heads can read/write/move
- ▶ we need a convention if two heads try writing in the same place

Theorem

Every multiple head Turing Machine M has an equivalent single head Turing Machine M'.

The simulation by M' of M on an input w which leads to a halting state takes time quadratic to the size of the input |w| and the number of steps t that M performs.

Definition (informal)

- ▶ at each step all heads can read/write/move
- ▶ we need a convention if two heads try writing in the same place

Theorem

Every multiple head Turing Machine M has an equivalent single head Turing Machine M'.

The simulation by M' of M on an input w which leads to a halting state takes time quadratic to the size of the input |w| and the number of steps t that M performs.

- scan the tape twice
 - 1 find the symbols at the head positions (which transition to follow?)
 - 2 write/move the heads according to the transition
- same arguments as before for the number of steps

Definition (informal)

- ▶ at each step all heads can read/write/move
- ▶ we need a convention if two heads try writing in the same place

Theorem

Every multiple head Turing Machine M has an equivalent single head Turing Machine M'.

The simulation by M' of M on an input w which leads to a halting state takes time quadratic to the size of the input |w| and the number of steps t that M performs.

- scan the tape twice
 - 1 find the symbols at the head positions (which transition to follow?)
 - 2 write/move the heads according to the transition
- same arguments as before for the number of steps

Definition (informal)

- ▶ at each step all heads can read/write/move
- ▶ we need a convention if two heads try writing in the same place

Theorem

Every multiple head Turing Machine M has an equivalent single head Turing Machine M'.

The simulation by M' of M on an input w which leads to a halting state takes time quadratic to the size of the input |w| and the number of steps t that M performs.

Proof (another one):

Definition (informal)

- ▶ at each step all heads can read/write/move
- ▶ we need a convention if two heads try writing in the same place

Theorem

Every multiple head Turing Machine M has an equivalent single head Turing Machine M'.

The simulation by M' of M on an input w which leads to a halting state takes time quadratic to the size of the input |w| and the number of steps t that M performs.

Proof (another one):

Multiple heads: example

Give a Machine Turing with two heads that transforms the input $\underline{\Box}w$ to $\underline{\Box}w \sqcup w$.

- $\underline{\sigma}$, $\overline{\sigma}$, $\overline{\underline{\sigma}}$: the position of the 1st, 2nd and both heads, respectively
- $R^{1,2}$: move both heads on the right
- σ^2 (as a state): write in the position of head 2 the symbol σ
- σ^2 (as a label): if the head 2 reads the symbol σ

Multiple heads: example

Give a Machine Turing with two heads that transforms the input $\underline{\Box}w$ to $\underline{\Box}w \sqcup w$.

- $\underline{\sigma}$, $\overline{\sigma}$, $\overline{\underline{\sigma}}$: the position of the 1st, 2nd and both heads, respectively
- $R^{1,2}$: move both heads on the right
- σ^2 (as a state): write in the position of head 2 the symbol σ
- σ^2 (as a label): if the head 2 reads the symbol σ

$$> R^2_{\sqcup} R^{1,2} \xrightarrow{\sigma^1 \neq \sqcup} \sigma^2$$

$$\downarrow \sqcup^1$$

$$L^{1,2}_{\sqcup} L^2_{\sqcup}$$

Unbounded tapes

What happens if the tape is bounded in one direction?

Unbounded tapes

What happens if the tape is bounded in one direction?

Theorem

Every two-direction unbounded tape Turing Machine M has an equivalent single-direction unbounded tape Turing Machine.

Definition (informal)

move the head left/right/up/down

Definition (informal)

move the head left/right/up/down

Why?

Definition (informal)

▶ move the head left/right/up/down

Why?

▶ for example, to represent more easily two-dimensional matrices

Definition (informal)

▶ move the head left/right/up/down

Why?

▶ for example, to represent more easily two-dimensional matrices

Theorem

Every two-dimensional tape Turing Machine M has an equivalent single-dimensional tape Turing Machine M'.

The simulation by M' of M on an input w which leads to a halting state takes time polynomial to the size of the input |w| and the number of steps t that M performs.

Definition (informal)

▶ move the head left/right/up/down

Why?

▶ for example, to represent more easily two-dimensional matrices

Theorem

Every two-dimensional tape Turing Machine M has an equivalent single-dimensional tape Turing Machine M'.

The simulation by M' of M on an input w which leads to a halting state takes time polynomial to the size of the input |w| and the number of steps t that M performs.

- use a multiple tape Turing Machine
- ▶ each tape corresponds to one line of the two-dimensional memory

Discussion

 We can even combine the presented extensions and still not get a stronger model
Discussion

- We can even combine the presented extensions and still not get a stronger model
- Observation: a computation in the prototype Turing Machine needs a number of steps which is bounded by a polynomial of the size of the input and of the number steps in any of the extended model