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Abstract. In modern parallel and distributed systems, the time for ex-
changing data is usually larger than that for computing elementary op-
erations. Consequently, these communications slow down the execution
of the application scheduled on such systems. Accounting for these com-
munications is essential for attaining efficient hardware and software uti-
lization. Therefore, we provide in this paper a new combined approach
for scheduling parallel applications with large communication delays on
an arbitrary number of processors. In this approach, a genetic algorithm
is improved with the introduction of some extra knowledge about the
scheduling problem. This knowledge is represented by a class of clus-
tering algorithms introduced recently, namely, convex clusters which are
based on structural properties of the parallel applications. The developed
algorithm is assessed by simulations run on some families of synthetic
task graphs and randomly generated applications. The comparison with
related approaches emphasizes its interest.

1 Introduction

In modern parallel and distributed systems, the scheduling problem is more
difficult not only by the new characteristics of these systems, but also by the
need for data transfer among tasks, which in general are heavily communicated.
Generally, the time for exchanging data is usually larger than that for com-
puting elementary operations. Consequently, these communications slow down
the execution of the application scheduled on the parallel processor system. Ac-
counting for these communications is essential for attaining efficient hardware
and software utilization. Given its importance, several heuristic methods have
been developed for considering communications in the scheduling problem. The
most widely used of the existing heuristics are list scheduling, task clustering
and genetic algorithms [1]. Task clustering is an efficient way to reduce relatively
the unbalance between communication delays and processing times. It starts
by grouping heavily communicating tasks to the same labeled cluster consider-
ing unbounded of processors [2]. A post-clustering step is performed to obtain
the final scheduling onto a bounded number of processors; however, if the post-
clustering stage is performed without any attention it could degrade the overall
system’s performance when the number of available processors is less than the
generated clusters [3].
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In this paper, we combine task clustering with a meta-heuristic for efficient
scheduling of applications with communication costs, especially for large com-
munications, onto arbitrary number of processors. The main contribution is to
develop an effective genetic algorithm, which is called Genetic Acyclic Clustering
Algorithm (mGACA in short), for scheduling tasks through clustering directly.
More precisely, it performs the clustering and post-clustering phases in one step.
The major feature of the new algorithm is that it takes advantage of the effec-
tiveness of task clustering for reducing communication delays combined with the
ability of the genetic algorithms for exploring and exploiting information of the
search space of the scheduling problem. The genetic algorithm makes the clus-
tering based on structured properties of the parallel applications. Moreover, the
main focus is on a recent class of structured clustering, called convez, which has
interesting properties [4] and has been recently used in the context of uncertain-
ties in the scheduling problem [5]. Hence, the final clustering generated by the
genetic algorithm will also remain acyclic. The mGACA algorithm is assessed by
simulations run on some families of traced task graphs representative of equa-
tion solver algorithms. Furthermore, the comparison with related approaches
emphasizes its interest.

The rest of the paper is organized as follows. In Section Bl we state the
problem, provide some related works and briefly discuss genetic algorithms.
Section Bl introduces the new genetic algorithm. Experimental results are given
in Section [l Section [Bl concludes the paper.

2 Background and Problem Statement

2.1 Notations and Definitions

Although many studies in scheduling have been focusing on heterogeneous sys-
tems, scheduling in homogeneous systems are still of concern because of its wide
use and relative simplicity of modeling. In this paper, we consider a generic mul-
tiprocessor system composed of m identical processors linked by an intercon-
nection network. While computing, a processor can communicate through one
or several of its links and communications among tasks executed on the same
processor are neglected. This computational model corresponds to the classical
delay model [0].

As usually, the application is modeled by a Directed Acyclic Graph (DAG). Tt
is represented by a precedence task graph G = (V, E), where V is the set of n
nodes corresponding to the tasks of the application that can be executed on the
available processors. To every task t;, there is an associated value p; representing
its processing time. (V') = >_ . p; represents the time it would take to run all
the tasks of the DAG on a single processor. F is the set of directed edges between
the tasks that maintain a partial order among them. Let < be the partial order
of the tasks in G, the partial order ¢; < t; models precedence constraints. That
is, if there is an edge e; ; € E then task ¢; cannot start its execution before task
t; completes. Hence, the results of task ¢; must be available before task ¢; starts
its execution. The weight of any edge stands for the communication requirement
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among the connected tasks. Thus, to every edge e;; € E there is an associated
value c¢;; representing the time needed to transfer data from t; to ¢;. When we
refer to large communication it means that maz p; < min ¢;;.

Definition 1 (clustering). A clustering R = {V;,<;}: of G is a mapping of
the graph onto groups of tasks associated to a total linear order extension of the
original partial order <.

The considered scheduling objective is to minimize the makespan of a clustering R
on the multiprocessor system when all the communication overheads are included.
Unfortunately, finding a schedule of minimal makespan is in general a difficult prob-
lem, even if there are unbounded number of processors available [2]. An optimal
schedule is a trade-off between high parallelism and low inter-processor communi-
cation. On the one hand, tasks should be distributed among the processors to bal-
ance the workload. On the other hand, the more nodes are distributed, the more
inter-processor communications, which are expensive, are performed.

2.2 Related Works

There exists mainly two classes of task clustering algorithms: the algorithms
based on the critical path analysis and those based on decomposition of the prece-
dence task graph. The critical path based clustering algorithms try to shorten the
longest execution path (considering both execution and communication costs)
in a precedence task graph. The principle is to group tasks if they belong to
the longest path and the relative parallel time is not increased [2[7]. The clus-
tering algorithms based on graph decomposition explicitly handle the trade-off
between parallelism and communication overhead. They intent to divide the ap-
plication into appropriate size and number of tasks to balance communication
and parallelism so that the makespan is minimized. The principle of the graph
decomposition clustering algorithms is to gather tasks into structured proper-
ties. McCreary and Gill in [8] developed a recursive canonical decomposition into
clans (a group of tasks is a clan if all these tasks have the same predecessors
and successors). This decomposition is unique and has also found applications
in other fields such as a graph drawing.

Lepere and Trystram [4] provided a recursive decomposition based on the
following principle: assigning tasks to locations into convex clusters. It means
that for any path whose extremities are in the same cluster, all intermediate tasks
are also in that cluster. The decomposition founded on convex clusters result in
interesting properties. For example, considering arbitrary time execution and
large communication delay the authors in [5] showed that the convex clustering
are 3-Dominant. It means that there exists a convex clustering whose execution
time on an unbounded number of processors is less than three the time of an
optimal clustering. Indeed, we expect better solutions on this specific class of
structures. The authors in [5] also investigated convex clusters in the context of
the scheduling problem with disturbances. In this context, the authors showed
the ability of convex clusters to absorb the bad effects of disturbances on the
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communications during the schedule without needing a stabilization process.
The main assumption is that the resulting clustering founded on convex clusters
does not contain any cycle (i.e., remains a DAG). Based on this assumption the
authors in [5] claimed that any convex clustering algorithm is intrinsically stable
since there are no cumulative effects of disturbances.

2.3 Genetic Algorithms and Clustering

Genetic Algorithms (GAs) are general-purpose, stochastic search methods where
elements (called individuals or chromosomes) in a given set of solutions (called
population) are randomly combined and modified (these combinations are called
crossover and mutation) until some termination condition is achieved [9]. GAs
use global search techniques to explore different regions of the search space
simultaneously by keeping track of a set of potential solutions of diverse char-
acteristics. GAs have been widely used for the scheduling problem in number of
ways showing the potential of using this class of algorithms for scheduling [10].
Most of them can be classified as methods that use GA to evolve directly the
actual assignment and order of tasks into processors, and methods that use GA
in combination with other scheduling techniques. Zomaya and Chan [I1] de-
veloped a genetic based clustering algorithm (henceforth called GA-cluster in
short and will be used in the experimental section) which follows the principle
of the Simple Genetic Algorithm [9]. GA-cluster takes as input the number of
clusters to be generated and the schedule is obtained directly. A chromosome
is represented as an array of integers of length equal to the number of tasks.
Each entry in the array corresponds to the cluster for a task. The initial pop-
ulation is randomly created. Traditional genetic operators are used to generate
new individuals. Selection uses a proportionate selection scheme.

3 Genetic Acyclic Clustering Algorithm: mGACA

3.1 The Provided Solution

The solution we provide is based on the decomposition of the task graph on
convex clusters. That is, mGACA partitions the graph into convex sets of tasks
with the property that the final clustering is a DAG (no cycles). The genetic
operators could produce individuals with a number of clusters greater than the
number of physical processors. Thus, a merging clustering algorithm is applied
after the reproduction process until the number of clusters has been reduced to
the actual number of processors. Both, genetic operators and merging clusters
algorithm has been designed to produce only legal solutions not violating con-
vexity constraints. Before presenting the new genetic algorithm, we introduce
the notion of convex clusters following Lepére and Trystram in [4].

Definition 2 (Convex cluster). A group of tasks T € V is convez if and only
if all pairs of tasks (t5,t,) € T, all the intermediate tasks t, on any path between
ty and t, belongs to T.
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For each clustering R = {V;, <;}:;, we can build a corresponding cluster-graph
denoted by G%“St” and defined as follows: the nodes of G%“”” are the clusters
of R. There exists an edge between two distinct cluster nodes V; and V; (i # j),
if and only if there exist two tasks t, € V; and t, € V; such that (¢;,t,) € E.
Moreover, the graph is weighted by max c;, on each edge, and each cluster node
Vi is weighted by v(V;) = >y cy, Pk-

Definition 3 (Acyclic clustering). A clustering R is acyclic, if and only if
all the clusters are convexr and G%“St” remains a DAG.

3.2 Algorithm Design

The mGACA scheduling algorithm follows the principle of the Grouping Genetic
Algorithms (GGA). GGA is a genetic algorithm heavily modified to suit the
structure of grouping problems [12]. Those are the problems where the aim is to
find a good partition of a set, or to group together the members of the set, but in
most of these problems, not all possible groupings are allowed. GGA manipulates
groups rather than individual objects, similarly mGACA manipulates clusters
rather than tasks. The pseudo-code of the mGACA algorithm is given below:

String representation. An essential characteristic of GAs is the coding of the
variables that describe the problem. In our GA-based approach, each chromo-
some is represented by a string of length n, where n is the number of tasks in the
given DAG. Each gene of a given string in the chromosome is a tuple, such as
(tj,Tr) where the i-th location of the string includes the task ¢; and its respec-
tive cluster Tx. We enriched this representation with a cluster part, encoding the
clusters on one gene for one cluster basis. The length of the cluster part repre-
sentation is variable and depends on the number of clusters (i.e., the physical
processors) given in the input of mGACA, it means, the number of clusters is
less than or equal to the number of processors. This representation is similar to
that used in [12] to encode valid solutions for the grouping problems.

Initial population. mGACA uses a Bottom-level Clustering Algorithm (BCA)
to create the initial population. BCA clusters the DAG according to the Bottom
level (blevel) value of every task. The blevel of a task ¢; is the length of the
longest path from t; to an exit task, including the processing time of ¢; [13]. Tt
is recursively defined by Eq.(T).

blevel(t;) = p; + maxtjeSUCC(t,-){Cij + blevel(t;)} (1)

The BCA algorithm works as follows: the algorithm starts by randomly selecting
the number of clusters nC1 to be generated (between 1 and m) for any individual.
After that, the clusters’ grain size nt_C1 is calculated. Next, compute the blevel
for each task and sort the tasks in decreasing order according to their blevel
value (tie-breaking is done randomly). Afterward, assign the sorted tasks in a
list. For each cluster T; assign the nt_Cl tasks in the top of the list and remove
them from that. This process is repeated until the number of clusters has been
reached.
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As mentioned above, any individual is legal if it does not contain any cycle re-
specting convexity and precedence constraints. The following proposition proves
that BCA always generate legal individuals.

Proposition 1. The BCA algorithm always generates feasible acyclic clustering.

Proof. The proof is as follows. Assume that 717, ...,7; are clusters generated by
BCA and tasks t; € T;, t; € T}, for @ < j. Since BCA sorts and clusters tasks in
sequence, it is obvious that blevel(t;) > blevel(t;). From the definition of blevel,
t; cannot be a successor of ¢;. Thus, tasks in 7; will not depend on any task in
T}. Therefore, the clusters are convex and the resulting clustering is acyclic. [

Fitness Function. We used the fitness function of the GA-cluster algorithm
n [II]. To evaluate the fitness of each solution, first the schedule length of the
particular solution is determined, then this schedule length is mapped to an
initial fitness value (fg,) using Eq.(2):

fs, = n(V) = Cs, (2)

Where C's, represents the schedule length of the individual S;. However, in some
cases fg can still be negative since some of the initial clusterings can result in
schedules whose makespan is worse than running the tasks on a single processor.
So a linear scaling is employed to obtain the final fitness values (Eq.(3])).

fs, — MIN[fg]

Js = NFAX[75] — MINTTS) ®)

Eq.@) is then applied to all initial fitness values to map them into the final
fitness values, and evaluate the individuals in the population. To obtain the
schedule length for a particular clustering, each task is scheduled in decreasing
order priority. That is, to schedule a task into the first slot available after the
specified earliest start time on the assigned processor. The earliest start time
est(t;) for task t; is calculated using Eq.(H)):

est(t;) = MAX[o(t;) + pi + cij, (i, j) € E] (4)

Where: o(t;) is the starting execution time of task ¢;. Let us recall that ¢;; =0
if tasks ?; and ¢; are placed on the same processor. Once all tasks have been
scheduled, the algorithm uses Eq.(@) to determine the schedule length of the
scheduled DAG.

CSj = MAX[U(tj) + pj] (5)

Stopping Condition. There are three ways mGACA will possibly terminate.
Firstly, if it has reached the maximum number of iterations. Secondly, when the
best fitness in a population has not changed for a specified number of generations.
Finally, when the difference between the average and the best fitness remains
constant for some given number of generations.
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Selection. mGACA uses the proportionate selection scheme and replaces the en-
tire previous generation. In order to implement proportional selection, mGACA
uses the roulette wheel principle of selection. In the roulette wheel selection, the
probability for selecting an individual S; is directly proportional to its fitness.

Crossover. Crossover takes two individuals as input and produces new individ-
uals that have some portions of both parent’s genetic material. Hence, the off-
spring keeps some of the characteristics of the parents. We adapted the crossover
algorithm given in [I2]. Let S; and Ss be individuals which should generate off-
spring S1 and S5. The algorithm starts by selecting randomly two crossing sites
and delimiting the crossing section, in each of the two parents. Then, inject the
contents of the crossing section of Sy (that is, the second parent) in the first
crossing site of S; (the first parent). Recall that the crossover works with the
cluster part of the chromosome, so this means injecting some of the clusters
from Ss into S;. After that, eliminate all tasks now occurring twice from the
clusters they were belonging to of in the first parent. Consequently, some of the
7old” clusters coming from the first parent are altered: they do not contain all
the same tasks anymore since some of those tasks had to be eliminated. If nec-
essary, adapt the resulting clusters, according to the convex cluster constraint.
At this stage, a local problem-dependent heuristic has been used. Finally, apply
the same procedure to the two parents with their roles permuted in order to
generate the second offspring (i.e., the second child).

The proposed crossover algorithm always generate feasible convex clusters
since another local heuristic is used to repair the altered clusters, ”if necessary”.
We have developed a simple local heuristic as follows: we remove the task of the
altered cluster violating the convex constraint and allocate it and the set of its
predecessors into a new cluster. We only select the predecessors belonging to the
altered cluster.

Merging. Since crossover operator can generate chromosomes with a number
of clusters greater than the available physical processors, we developed an algo-
rithm to merge existing clusters in a pairwise fashion until the number of clusters
is reduced to m. The merging clusters algorithm (MCA) works over the cluster-
graph G%ustr. Recall that the clusters represent the task nodes in G¢%us*". This
procedure initially sorts the elementary clusters by v(V;), to allow the smallest
cluster node to be considered for merging at each step. For each cluster calculates
its blevel. After that, chooses the smallest cluster. If the chosen cluster will be
merged with one of its immediate predecessors, then select the predecessor with
the smallest blevel (ties are broken by selecting the immediate predecessor which
communicates the most) and merge them in one cluster. In other case, if the cho-
sen task will be merged with one of its immediate successors, then select the im-
mediate successor with the greatest blevel value and merge them in one cluster.
Repeat this process until the number of cluster nodes is less than or equal to the
number of processors m. Let us remark that, if the chosen task is an entry task
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(i.e., a task without predecessors) then the algorithm merges it with any of its
immediate successors. In other case, if it is an exit task (i.e., a task without
successors) then MCA chooses a task among its immediate predecessors and
merges them.

Proposition 2. MCA always merge GE“5" in feasible acyclic clustering.

Proof. Let us proof Proposition [2] with an example. Let us consider the acyclic
graph G%“””. Supposse that we have three cluster nodes of G%“St” (we name
them T,, T, and T, respectively). Let us consider the partial orders T, <
T, < T, and T, < T, given in the G%“St” graph. Now, consider that T, is
selected to be merged with another cluster. Thereafter, T,,T, € PREC(T})
(the set of immediate predecessors). It is clear that blevel(T,) < blevel(T}).
As MCA merges only two clusters at the same time and selects always the
min(blevely;c prec(r,)[i]), thus MCA will select T, to merge with T and the
resulting clustering still acyclic clustering. As it holds for all T, € PREC(T})
with the min(blevelyr,e prec(r.)[T,]) this completes the proof. O

Mutation. The mutation operator works by changing a task’s cluster to a new
cluster. First, an individual is randomly chosen. Next, the mutation operator
is applied to the selected chromosome with a certain probability p,,. Then, the
mutation operator selects a cluster T; randomly (from the cluster part of the
individual). After that, the mutation operator selects a task ¢; from the top or
the bottom of the selected cluster T;, creates a new cluster and puts the task
t; in the new cluster. We recall that the tasks in the clusters are sorted by
topological order. Thus, if the mutation operator selects any task from the top
or the bottom of any cluster and puts it in a new cluster does not violate the
convex cluster constraint and the resulting clustering is acyclic. Finally, after
mutation, mGACA verifies if the number of clusters is greater than the number
of processors m, then apply the merging algorithm MCA.

4 Experiments

In this section, we present the performance comparison of mGACA and related
algorithms by extensive experiments. The related algorithms are the well-known
standard algorithm ETF [14] and GA-cluster described in Section 223 Experi-
mentations have been performed on a PC with a 1 Ghz dual-core. The following
parameter values were adopted by mGACA and GA-cluster for these exper-
iments: population size equal to 300, crossover probability of 0.75, mutation
probability of 0.001, a generation limit of 300, and a percentage of convergence
of 0.75. We conducted experiments on two classes of instances: synthetic task
graphs, and random graphs. We have used the normalized schedule length (NSL)
as a metric for comparison. It is defined as the ratio of the schedule length com-
puted by the algorithm and the sum of the processing times of the tasks on a
critical path. Average NSL (ANSL) values are used in our experiments.
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4.1 Results on Synthetic Task Graphs

For the first comparison, we present the schedule lengths produced by each algo-
rithm for a set of synthetic task graphs representing basic numeric kernels [I5].
Synthetic task graphs can be characterized by the size of the input data matrix
because the number of nodes and edges in the task graph depends on the size
of this matrix. For example, the number of nodes for LU decomposition graph
is equal to (N2 + N — 2)/2 where N is the size of the matrix. We conducted
experiments on three different families of synthetic graphs: namely LU decom-
position, Cholesky factorization, and Jacobi transformation. For each synthetic
graph, we have varied the communication to computation cost ratio (CCR). It
is defined as the average of weights of edges divided by the average of tasks’
computation times. Figure [I] gives the ANSL values of the algorithms for the
Cholesky graphs at various matrix sizes when the number of processors is equal
to 8 and 32. For each matrix size, there are three different CCR ratios: 5, 10
and 15. We observe that the performance of the mGACA algorithm outperforms
on average the related approaches. For example, the ANSL value of mGACA
on 8 processors, is shorter than that of the ETF and GA-cluster algorithms by
12.44% and 50% respectively. Moreover, the ANSL value produced by mGACA
on 32 processors, is shorter than that of the ETF and GA-cluster by 15.23% and
61% respectively.

The next experiment is with respect to various CCR ratios. We simulated
the algorithms on the LU graph with matrix size equal to 19 (189 tasks) and six
CCR values 5, 8, 10, 12, 15, 18. Figurelshows the performance of mGACA with
the result of ETF and GA-cluster by computing a percentage of improvement of
the ANSL:

ANSLalgorithm - ANSLmGACA %

100 6
ANSLalgorithm ( )

gain =

GA-cluster

ANSL
ANSL

9 34 39 44 9 34 39
Matrix Dimension Matrix Dimension

Fig.1. ANSL for Cholesky factorization graphs with respect to the matrix size on 8
(left) and 32 (right) processors
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70

% Gain over ETF ]
% Gain over GA-cluster w—

60

% ANSL Gain

5 8 10 12 15 18
CCR

Fig. 2. Percentage improvement in ANSL of mGACA over ETF and GA-cluster

From Figure 2] we notice that mGACA improves the performance of ETF and
GA-cluster while increases the CCR. Let us remark that for this experiment
mGACA never computed schedules that delayed the makespan (i.e., schedules
greater than the sequential time) when scheduling on the LU graphs which is
not the case for ETF and GA-cluster.

4.2 Results on Random Graphs

This subsection presents the results obtained on random graphs. We have gen-
erated two sets of random graphs: Winkler graphs and Layered random graphs.
The Winkler graphs [16] are random graphs representative of multidimensional
orders. The three algorithms have been tested on random 2-dimensional orders.
To generate 2-dimensional order with n elements, n points are chosen randomly
in the [0;1] x [0; 1] square. Each point becomes a node and there is an arc be-
tween two points a and b if b is greater than a according both dimensions. To
generate the second set of random graphs we have implemented a layered ran-
dom graph generator such as the one proposed in [7]. The algorithm takes three
parameters N, L and p that can be described as follow: IV nodes are distributed
on L layers and for each couple of successive layers (I,1 + 1) and each couple
(a+b) €l x(l+1), there is an arc (a,b) with probability p. No other arcs are
present (especially between non successive layers). For generating the two sets of
random graphs, we varied two parameters: size and CCR. The size of the graph
was varied from 100 to 300 nodes with increment of 50. Five different values
of CCR were selected: 2, 5, 10, 15, and 20. There were 30 graphs generated for
each combination of those parameters. The processing time was randomly se-
lected from the range (1,20) with the uniform distribution. The algorithms were
scheduling those graphs on three different number of processors (fully connected
8, 16 and 32 processors). In total, there were 2250 different experiment settings.
We compared the result of the mGACA with the result of ETF and GA-cluster
by computing the percentage of improvement of the ANSL.
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Table 1. Percentage gain on the normalized schedule length produced by mGACA
over the ETF and GA-cluster

Factor % gain over ETF  |% gain over GA-cluster
Best Avg  Worst |Best Avg Worst

2 —17.25 —19.25 —22.25|—-12.02 —11.33 —10.24
5 —1.32 2.66 6.43 |21.585 22.57 23.95
CCR |10 5.23 18.10 25.52 [50.02  50.73 51.58
15 9.71 1947  28.12 |61.34 61.8 62.39
20 11.77 23.67  32.76 |67.90 68.26 68.78
100 —1.88 7.39 14.60 [52.33  54.28 56.02
150 0.0 10.25 17.11 [56.67 57.11 57.80
graph size|200 1.00 11.68 20.37 [54.06 54.43 55.01
250 3.74 1524  24.09 |50.45 50.83 51.33
300 7.33 14.18  20.64 |46.08 46.50 47.13
8 3.31 12.03 18.94 |48.82 49.88 50.98
system |16 3.64 12.43 20.04 [52.13 52.73 53.48
32 5.00 12.57  20.99 |53.72  54.08 54.66

We ran each algorithm 20 times on each graph. We compared the best, aver-
age and the worst ANSL. As the number of experiments is considerable, Table[I]
presents only aggregated results. Negative values mean that mGACA gets largest
schedules than that computed by the related algorithms. We observe that any
increases of the different experiment settings (i.e., CCR, size) the performance
of mGACA increases regarding ETF and GA-cluster. We can see that on aver-
age mGACA outperforms the related approaches. The most significant improve-
ment is given while increasing communication delays. The mGACA algorithm
performs better on graphs with large communications. On the contrary, it is the
most important factor that affects the performance of the related approaches.
On the one hand, the mGACA algorithm takes advantage of clustering by gath-
ering tasks into appropriate size to balance communication and parallelism while
minimizing the makespan. On the other hand, it is well-known that the perfor-
mance of ETF is 2 — L + p factor of the optimal [I4], where p is a factor of
the communication delays. If communication delays increase the makespan of
the ETF algorithm increases as well. With respect to the GA-cluster algorithm,
the knowledge-augmented significantly helps mGACA to locate better solutions
than GA-cluster.

Regarding the running time, we noticed as expected that mGACA is slower
than ETF because the nature of genetic algorithms. However, the running time
to compute a solution is admissible in all the experiments, for example, for
the Cholesky factorization graph with matrix size of 44 (1034 tasks), mGACA
spent 35 seconds on average to compute a solution. On the other hand, the
running time of mGACA is smaller than GA-cluster because the knowledge-
augmented significantly helps mGACA to explore the search space and locate
better solutions spending less time than GA-cluster.
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5 Conclusions and Perspectives

We have presented a new genetic algorithm for scheduling tasks through cluster-
ing based on the graph decomposition. The new algorithm was improved with the
introduction of some knowledge about the scheduling problem. This knowledge
is represented by the convex clusters which are based on structural properties
of the parallel applications. Extensive experiments have been run for comparing
the developed approach to popular related scheduling algorithms and emphasize
the interest of this algorithm and convex clusters. The new genetic algorithm
seems well suited for new parallel systems like clusters of workstations where the
inter-processor communications are much larger than the intra-processor com-
munication costs. One important prospect is to investigate the behavior of the
developed algorithm in the context of the scheduling with disturbances on the
communication delays.
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