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Abstract

We study two problems directly resulting from organi-
zational decentralization of the Grid. Firstly, the problem
of fair scheduling in systems in which the grid scheduler
has complete control of processors’ schedules. Secondly,
the problem of fair and feasible scheduling in decentralized
case, in which the grid scheduler can only suggest a sched-
ule, which can be later modified by a processor’s owner.
Using game theory, we show that scheduling in decentral-
ized case is analogous to the Prisoner’s Dilemma game.
Moreover, the Nash equilibrium results in significant per-
formance drop. Therefore, a strong community control is
required to achieve acceptable performance.

1 Introduction

Computational Grids [10] are distributed supercomput-
ers of a very large scale. With the growing level of complex-
ity of models used in many areas of modern science on one
hand, and the growing volume of experimental data to an-
alyze on the other hand, the access to computational power
becomes a key apparatus [4] in areas as diverse as molecular
biology, particle physics, physical chemistry, or civil engi-
neering. Computational grid may become a convenient tool
that provides enormous computing power required by such
projects. Computational grids have been extensively stud-
ied since the end of the nineties and fairly complete mid-
dleware (such as the Globus Project [9]) is available. One
of the most important remaining challenges is rather of eco-
nomical, or even psychological nature. The Grid, by its defi-
nition [8], is inherently distributed, as it combines resources
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under different administrative domains. Consequently, cer-
tain rules of collaboration must exist, which specify how
users from one domain access resources belonging to oth-
ers. Providers must have some motivation to share their re-
sources, expressed either by earning money for each CPU
hour donated, by barter-trading the access, or by formal bi-
lateral agreements between institutions.

1.1 Motivation and Objectives

It is difficult to use “pure” classic Combinatorial Opti-
mization for optimizing the resource management on com-
puting grids. An “instance” of grid cannot be easily rep-
resented, as there are too many parameters, not only the
description of processors, applications and communication
links, but also their interactions. Furthermore, it is hard
to choose the “right” criterion, reflecting the diversity of
needs or wishes of users, systems administrators and re-
source owners. Finally, the behavior of the grid seems to
be unpredictable. No reasonable model (even probabilistic
one) is available today.

The objective of this work is, firstly, to investigate the
use of game theory [17] as an alternative for describing the
problem of grid resource management. Secondly, we study
the problem of multi-criteria scheduling with equitable opti-
mization approach [13] and provide algorithms that produce
solutions which are fair to all the participants.

1.2 Contribution

The most important contribution of this paper (Sec-
tion 4.1) is a demonstration that scheduling in a computa-
tional grid composed of processors which can alter locally
their schedule is analogous to the Prisoner’s Dilemma game.
Although global cooperation is profitable, each processor is
tempted to “cheat” by favoring its local jobs. Moreover, we
show that if everyone “cheats”, the waste of performance
experienced by every processor is significant (resulting per-
formance is arbitrary far from the optimum). This result



proves that, although grids are decentralized, a strong soci-
ety’s control is essential to achieve acceptable performance.

To our best knowledge this paper presents also the first
application of the axiomatic theory of equity to the prob-
lem of fair scheduling. We consider fairness both in game-
theoretic and in pure optimization setting.

1.3 Organization

The paper is organized as follows. In Section 2 we intro-
duce the model of the computational grid composed of ded-
icated processors and provide some general results on the
size of the search space. Then, we introduce a centralized,
grid-level scheduler which proposes fair ordering to each
processor. The power of the centralized scheduler (and,
consequently, the solutions it can impose on individual pro-
cessors) depends heavily on the level of control the individ-
ual organizations have on their processors. Firstly, we can
assume that the organization is not able to impose any or-
dering on its processor. The problem transforms then into
multi-criteria optimization performed by the grid scheduler.
We analyze this problem and present an algorithm which
produce such solutions in Section 3. Secondly, each organi-
zation may have complete control over the schedule of the
local processor. In such situation, the grid scheduler acts
only as an advisor. The proposed solution must be prof-
itable for each organization. However, each organization
is tempted to modify it locally, if the organization’s gain
is increased. Consequently, such a problem must be ana-
lyzed with a game-theoretic approach (Section 4). Section 5
presents basic validation of the heuristics proposed. A short
description of related work is provided in Section 6 before
concluding in Section 7.

2 Grid Model

Informally, a computational grid logically interconnects
several processing units such as clusters, supercomputers,
but also pieces of specialized equipment like sophisticated
displays, microscopes, or DNA sequencers (Figure 1). The
actual physical network, consisting of high-performance
network links, is out of the scope of this paper. Users are
grouped in organizations, such as laboratories or faculties.
Each organization owns one of the processors, which is the
organization’s contribution to the grid. By contributing,the
organization expects that its users will be granted access
to other processors in a fair manner. Each organization is
concerned only with the performance (measured as the sum
of completion times) of the jobs produced by its members.
Processors have their local schedulers, which order jobs to
be computed according to some criteria. A centralized grid
scheduler helps to coordinate local schedulers. However,

Figure 1. A grid composed of two organiza-
tions and two dedicated processors. P1 pro-
cesses white jobs, P2 processes gray jobs.
O1 produced 7 jobs (plotted in continuous
lines), 4 of them are not yet sent, two are wait-
ing in P1’s queue and one is waiting in P2’s
queue. O2 produced 5 jobs (plotted in dotted
lines).

the organizations are independent, i.e. a local scheduler is
not forced to follow the advice given by the grid scheduler.

In this paper we address two issues concerned with such
an architecture. Firstly, what should be the properties of the
schedules proposed by the grid scheduler to be acceptable
by local schedulers. Secondly, how can the grid scheduler
produce such schedules.

2.1 Notation and Preliminary Definitions

ByO = {O1, . . . , Om} we denote the set of independent
organizations forming the grid. Each organizationOi owns
a processorPi. Processors arededicated. Therefore, each
job in the system must be executed on a specific processor.

Jk
i,q is kth job which must be executed on processorPq

and which is produced (and owned) by organizationOi. In-
dexk is used only to distinguish between jobs on a proces-
sor and does not imply the arrival or execution order. By
Ji,q we denote the set of all jobs produced byOi which
must be executed onPq. ni,q = |Ji,q| is the number of
such jobs.

We will use the standard game-theoretic notation of−i

to denote the set containing everything but the elementi, so
J−i,q =

(
⋃

j Jj,q

)

−Ji,q. Similarly, by· we denote the set
containing all possibilities, e.g.Ji,· is the set of jobs that
are produced by organizationOi: Ji,· =

⋃

j Jj,q.
From processor’sPq point of view, jobs produced by the

processor’s organizationJq,q are called thelocal jobs. Re-
maining jobsJ−q,q to be executed on this processor are
called theforeign jobs. For organizationOi, remote jobs
Ji,−i are the jobs produced by this organization which are
to be executed on non-local processors.

A scheduler is an application which assigns start times
to jobs. A scheduling problem is the problem how to as-



sign such start times (formal definitions follow). A schedul-
ing problem is consideredoff-line if all the jobs are known
before the scheduling starts. Here, we also consider that
all the jobs are ready to be executed (there are norelease
dates). A clairvoyantscheduler knows the sizepk

i,q of each
job Jk

i,q. There isno preemptionif the job must be executed
completely and cannot be interrupted after a processor has
started to execute it. A processor can be shared by the jobs
assigned to it in many ways. Intime sharing, at any mo-
ment, a processor executes only one job.

By Ck
i,q we denote the completion (finish) time of a job

Jk
i,q. For an organizationOi, we may compute the sum of

completion times asCi =
∑

q

∑

k Ck
i,q and the maximum

completion time (makespan) asCmax i = maxk,q Ck
i,q .

In the classic multiprocessor scheduling problem, the op-
timization of ΣCi results in schedules better for users,
whereas the optimization of the makespanCmax produces
schedules which utilize the machine better [6].

For processorPq, a (list) scheduleis a permutationπ :

J·,q → (J
π(1)
·,q , J

π(2)
·,q , . . . , J

π(n
·,q)

·,q ) of jobsJ·,q. A sched-
uler is an application which produces schedules, given the
sets of jobs assigned to each processor. A non-preempting,
time-sharing processor executing a scheduleπ, firstly exe-
cutes the first jobJπ(1)

·,q , then, when the jobs finishes, exe-

cutes the second oneJπ(2)
·,q and so on. A Shortest Process-

ing Time (SPT) scheduleπSPT is a schedule which orders
the jobsJ·,q according to non-decreasing sizes of jobs, i.e.

p
πSPT (k)
i,q ≤ p

πSPT (k+1)
i,q . If there is one processor and one

organization, SPT schedule is optimal regarding the sum of
completion times of jobs [3].

2.2 Problem Statement

We consider off-line, clairvoyant scheduling with no pre-
emption on time-sharing processors. Each organizationOi

is concerned with the sum of completion timesCi of the
jobsJi,· which have been produced by its members. Or-
ganizationOi does not care about the performance of other
organizations. However, as the processors are dedicated, or-
ganizations must submit jobs also to non-local processors.
As a result,Ci depends heavily on the performance of jobs
executed on processors other than the organization’s local
processor, which in turn are controlled by other organiza-
tions.

The scheduling problem considered in this paper is the
fair ordering of jobsJ·,q on each processorPq which min-
imizes the sum of completion timesCi of all the organi-
zations. Generally, the notion of fairness is hard to define
precisely. In this work, we follow the axiomatic theory of
equity, which basically states that the scheduling algorithm
does not prefera priori any organization (we present the
axiomatic theory of equitable optimization in Section 3.1).

2.3 General Remarks

In a system having multiple objective functions, multi-
criteria approaches to optimization must be used. Those
approaches usually produce a set ofPareto-optimal[17] so-
lutions. In each Pareto-optimal solution, the result of one
objective function cannot be improved without worsening
one of the other objectives. We propose to further restrict
the Pareto set to contain onlyequitable solutions. In such
a set, the objective which is worse off cannot be improved
without worsening much more one of the other objectives.
Informally, equity guarantees that the resulting sum of com-
pletion times would be fair to every organization. However,
if each organization is able to improve its objective by intro-
ducing some local modifications in the schedule, the result-
ing system must be analyzed bygame theoreticapproaches.

The following general property applies in both equitable
optimization and in game-theoretic approach:

Proposition 1 For a processorPq, a schedule which orders
jobsJi,q originating from a organizationOi not in shortest
processing time (SPT) order is Pareto-dominated by a SPT
schedule for those jobs.

Proof. The proof of this proposition is based on an ex-
change argument and it is analogous to the proof of the
optimum of the SPT schedule for a single processor and
a single organization. Let us assume that there are two jobs
Jk

i,q andJ l
i,q executed in non-SPT order. Jobk is longer

(pk
i,q > pl

i,q), but is executed before jobl (Ck
i,q < Cl

i,q). If
those two jobs are swapped (resulting in completion times
Cl∗

i,q < Ck∗
i,q) the sum of completion times of those two jobs

will be decreased.J l
i,q completes earlier (i.e.Cl∗

i,q < Ck
i,q,

since the first job starts at the same moment, but it is
shorter). Jk

i,q completes at the same moment asJ l
i,q did

before the swap (Ck∗
i,q = Cl

i,q). All the jobs scheduled be-
tween those two jobs will complete earlier, as they will start
earlier. The rest of the jobs is not affected by the swap. Con-
sequently, this swap reduces at least the sum of completion
timesCi for the ownerOi of the jobs being swapped. 2

Note that this proposition does not apply for jobs belong-
ing to different organizations. Given two jobs with different
ownersJk

i,q andJ l
j,q, Jk

i,q executed beforeJ l
j,q, swapping

them would increaseCi, at the same time decreasingCj .
Consequently, neither solution would Pareto-dominate.

The consequence of the proposition presented above is
that the number of reasonable (Pareto-efficient) schedules
is reduced considerably. However, their number is still very
large. Let us assume that there are only two organizations
O1 and O2. Consider processorP1 with n1,1 local jobs
andn2,1 foreign jobs. A multiset (called also a bag) is a
set which may contain multiple copies of an element. The
schedule can be fully described by a multiset of sizen2,1,



with elements{1, . . . , n1,1+1}. The idea is that each mem-
ber of the multiset specifies a placement for one foreign job.
In order to construct a schedule from the multiset, the lo-
cal jobs are ordered according to SPT. Then, the shortest
foreign job is assigned the smallest element from the mul-
tiset, which specifies its placement (1 – the job is placed
before the shortest local job,2 – before the second shortest
local job, . . . ,n1,1 + 1 – after the longest local job). This
element (actually, one of the copies of the element) is re-
moved from the multiset. The algorithm proceeds with the
rest of foreign jobs (considering them in SPT order). Con-
sequently, the number of SPT schedules for one processor
is equal to the number of multisets of sizen2,1 with ele-
ments{1, . . . , n1,1 + 1}, which in turn is equal to the num-
ber of combinations with repetition of(n1,1 + 1) objects
from whichn2,1 objects are chosen:

(

n1,1 + n2,1

n2,1

)

=
(n1,1 + n2,1)!

n1,1!n2,1!
∈ O(n

n2,1

1,1 )

Note that although not necessarily all SPT schedules
are Pareto-optimal, in the worst case the number of non-
dominated schedules for a single processor is exponential
with the number of foreign jobs [1]. A complete sched-
ule on the grid level specifies schedules for each proces-
sor. In two processor case, each ofO(n

n2,1

1,1 ) schedules of
the first processor is matched withO(n

n1,2

2,2 ) schedules of
the second processor. Most of the resulting combinations
are Pareto-dominated. However, at leastO(n

n2,1

1,1 ) Pareto-
optimal schedules remain. Thus, the number of Pareto-
optimal grid schedules is also exponential.

3 Equitable Optimization Approach

In this section we assume that organizations cannot con-
trol the schedule on their processors. The problem con-
sidered is how to construct a grid schedule (consisting of
schedules for each processor) which would treat all the par-
ticipating organizations fairly, at the same time being effi-
cient. This problem is, in fact, multicriteria minimization
of the sum of completion timesCi of different organiza-
tions. In this section we will firstly characterize some gen-
eral properties ofequitable multicriteria optimization, and
then propose an heuristic approach which produce equitable
solutions of the multicriteria minimization – a local search
method called Equitable Walk.

3.1 Fairness and Equitable Optimization

In this work, the concept of fairness is identified withdis-
tributive fairness, a sense narrower than social justice [18].
Distributive fairness is usually related to the question ofdis-
tribution of some goods, resources or costs, be it kidneys for

transplantation, parliament mandates, or the costs of water
and electricity. Although extensively studied [19], fairness
is a complex concept that depends much on cultural values,
precedents, and the context of the problem. Therefore, pre-
cise definition is needed to use it in research.

Consider aMulticriteria Optimization Problem (MOP)
with m objective functionsfi(x) on a uniform scale. We
assume, without loss of generality, that the objective func-
tions are to be minimized.f(x) is a vector-function that
maps the decision spaceX = Rl into the criterion space
of outcome vectorsY = Rm; Q ⊂ X denotes the fea-
sible set,x ∈ X denotes the vector of decision variables,
y = [f1(x), . . . , fm(x)] denotes the outcome vector.

Distributive fairness can be precisely described by ax-
ioms, which formulate arelation of preferenceon the out-
come vectors. Aequitable rational preference relationis
any symmetric and transitive relation satisfying the follow-
ing axioms (see [13] for formal definitions):

symmetry The ordering of the outcome values is ignored
(e.g. a solutiony′ = [4, 2, 0] is equally good as a solu-
tion y′′ = [0, 2, 4]).

monotony A outcome improving the value of one of the
objectives is preferred, the values of other objectives
are not deteriorated (e.g.y′ = [3, 2, 0] is preferred to
y′′ = [4, 2, 0]).

principle of transfers A transfer of any small amount
from an outcome to any other relatively worse-off out-
come results in a more preferred outcome vector (e.g.
y′ = [3, 2, 1] is preferred toy′′ = [4, 2, 0]).

A feasible solutionx ∈ Q is anequitably efficientsolution
of MOP, iff there does not exist anyx′ ∈ Q such thatf(x′

)
is preferred tof(x) by any equitable rational preference re-
lation. Note that equitably efficient solutions are a subsetof
Pareto-optimal solutions to a MOP.

An Equitable Multicriteria Optimization Problem
(EMOP) can be formulated on the basis of a MOP,
such that the Pareto-optimal solutions to the EMOP
will be equitably efficient solutions to the MOP. The
original vector of outcomes of MOP is transformed
into a vector of cumulative ordered outcomes. First,
introduce the ordering mapΘ : Rm → Rm such that
Θ(y) = (θ1(y), θ2(y), . . . , θm(y)), which sorts an
outcome vectory according to non-increasing values
of individual outcomes. Next, apply a linear cumula-
tive map toΘ(y), resulting in thecumulative ordering
map Θ̄(y) = (θ̄1(y), θ̄2(y), . . . , θ̄m(y)) defined as
θ̄i(y) =

∑i

j=1 θj(y) for i = 1, . . . , m. The coordinates
of vectorΘ̄(y) express, respectively: the largest outcome,
the total of the two largest outcomes, the total of the three
largest outcomes, etc.

The following theorem is a consequence of results from
the theory of majorization:



Theorem 1 [13] Outcome vectory′ ∈ Y equitably domi-
natesy′′ ∈ Y , iff θ̄i(y

′) ≤ θ̄i(y
′′) for all i ∈ I where at

least one strict inequality holds.

Note that Theorem 1 permits to express equitable efficiency
for MOP in terms of the Pareto-optimality for the EMOP:

Corollary 1 A feasible solutionx ∈ Q is an equitably effi-
cient solution of the MOP, iff it is a Pareto-optimal solu-
tion of the EMOP, the problem with objectives̄Θ(f(x)):
min {(θ̄1(f(x)), . . . , θ̄m(f(x))) : x ∈ Q}

3.2 Equitable Walk (EW)

EW is a heuristics which produces a number of grid
schedules by iterative modifications of the initial SPT
schedule in order to improve the outcome of the organiza-
tion disfavored by the SPT schedule. The resulting sched-
ules are possibly equitable: the algorithm may produce non-
equitable schedules and not all possible equitable schedules
may be produced.

The algorithm modifies the schedules byswitchingthe
order of two jobs executed one after another on the same
processor. Let us assume that jobJk

i,q is executed before
J l

j,q. Thedeteriorationfrom a particular switch can be de-
fined as the difference between the decrease ofCj and the
increase ofCi. For instance, ifpk

i,q = 3 andpl
j,q = 4, the

switch of order of those two jobs will reduceCj by 3 and
increaseCi by 4. The deterioration of that particular switch
is thus1.

Corollary 2 A schedule which orders jobs on all proces-
sors according to SPT (regardless of their owners) is equi-
table.

This is a direct consequence of Theorem 1. Such schedule
(denotedSPT) is optimal with regard to the sum of com-
pletion times of all jobs on all processors (

∑

i

∑

q

∑

k Ck
i,q).

Therefore, it is also the minimal sum of sum of completion
times of respective organizations (

∑

i Ci). Hence,SPT
is Pareto-optimal solution of the aggregated equitable opti-
mization problem, as it minimizes the sum of all criteria.

The algorithm starts with ordering jobsJ·,q on every
processorPq according to SPT. Then, the organizationOi

with the largestCi is selected. For eachOi’s remote job
Jk

i,q, the algorithm tentatively advances the job by switch-
ing Jk

i,q with the job executed immediately before. Simi-
larly, each foreign jobJk

·,i executed onOi’s local proces-
sor Pi which is followed by a local jobJ l

i,i is tentatively
delayed by switchingJk

·,i with J l
i,i. From all the tentative

moves performed, the one which results in the smallest de-
terioration is actually performed. Then, the grid scheduleis
appended to the list of results.

The algorithm iterates such moves until eitherCi is no
longer the largest completion time, or no further improve-
ment is possible. In the first case, the algorithm can proceed
with improving the payoff of the other organization, in the
purpose of producing more solutions. However, in order not
to introduce infinite loops, a taboo list of previously visited
schedules must be kept (such schedules cannot be revisited).

The output of the algorithm is a list of grid schedules.
The first (SPT) and the second schedule produced are def-
initely equitable. However, the equitableness of the rest of
the schedules is not guaranteed. Therefore, after the above
algorithm stops, the list of solutions is cleaned. All the so-
lutions which are not equitably-optimal wrt. other solutions
on the list are removed. Moreover, the algorithm may not
produce all possible equitable solutions (the equitable part
of the Pareto-front), because it may be trapped in a local
optimum. We provide an experimental analysis of the algo-
rithm in Section 5.

4 Game-Theoretic Approach

In this section we assume that each organizationOi con-
trols its local processorPi and therefore is able to impose
the scheduling of jobsJ·,i. Each organization wants to min-
imize the sum of completion timesCi of its jobsJi,·. How-
ever,Ci depends also on the completion time ofOi’s re-
mote jobsJ−i,·, which in turn depends on the schedules
imposed by other organizations. Game theory [17] studies
the problems in which players maximize their returns which
partially depend on actions of other players. Consequently,
it seems to be an adequate tool to study this model.

More formally, agrid scheduling gamecan be defined as
a game in the normal form:
• the set of players is equal to the set of organizationsO;
• a strategyσi of a playerOi is an ordering ofJ·,l (fol-

lowing the local SPT rule from Proposition 1, as all the
other strategies are Pareto-dominated);

• a payoff function for a playerOi resulting from a pro-
file of strategiesσ = [σ1, . . . , σN ] is the reduction
of the player’s sum of completion times with com-
parison to the selfish outcome of the game:ui(σ) =
Ci(MJF) − Ci(σ).

In the first place,Oi can use a greedyMy Jobs First(MJF)
strategy, which schedules all the local jobsJi,i before any
foreign job. Given any strategies of the rest of organiza-
tions, MJF strategy will reduce the total finish timeCi, by
advancing local jobsJi,i. Therefore, MJF is theprudential
strategyfor each player. However, a solution in which every
organization schedules jobs according to MJF (denoted as
MJF) very often is not optimal and it is Pareto-dominated
by other solutions. The goal of the grid scheduler is to pro-
pose a schedule at least Pareto-dominatingMJF. That is
why we define the payoffui(σ) for each playerOi as the



gain overMJF for that player. The payoffs defined in such
a way must be maximized. Any profile of strategiesσ re-
sulting, for a playerOi, in ui(σ) < 0 is not feasible. The
proposed total execution time forOi’s jobs is greater than
the longest possible total execution time whenOi decides
to order jobs on its processor according to MJF. Therefore,
Oi would play MJF, which would also reduce other payoffs.

We will analyze this game from two different perspec-
tives. Firstly, in Section 4.1, we assume that there is no co-
operation between the players. The grid scheduler proposes
a schedule (a strategy) for each player. However, players are
not obliged to follow the strategies proposed. We will show
that such a game is analogous to the well-known Prisoner’s
Dilemma (PD) game. Secondly, in Section 4.2, we increase
the power of the grid scheduler. If the scheduler proposes
a schedule resulting in positive payoff for each player, the
players must follow such schedule. We show how to chose
a fair schedule in such setting.

4.1 Non-cooperative Game

Let us assume that, for a particular job configuration
J = {Ji,q}, a grid scheduler is able to produce sched-
ule σ

∗ = [σ∗

1 , . . . , σ∗

n], which results in positive payoff
ui(σ

∗) > 0 for each player. Consequently, there must be at
least one playerOi, for whom the proposed strategyσ∗

i is
different than MJF. Thus, inPi’s schedule, there is at least
one foreign jobJk

j,i scheduled before a local jobJ l
i,i. If Oi

decides to switch the order of execution of those two jobs,
the local jobJ l

i,i will be finished faster and, consequently,
the player’s payoffui will increase, assuming that the rest
of the players orders their jobs according toσ

∗. At the same
time the payoff of the owner of the delayed jobuj will de-
crease. It follows that the strategy maximizingui is MJF,
given that the others play any profile of strategiesσ. Addi-
tionally, if all the other players play MJF, the only strategy
which guarantees non-negativeui for Oi is to play MJF as
well. Accordingly,MJF is the only Nash equilibrium of
the one shot, non-cooperative grid scheduling game.

Consequently, the game is analogous to the multi-player
Prisoner’s Dilemma (PD). The equivalent of the mutual col-
laboration in PD is when organizations follow scheduler’s
suggestionσ∗. When one of the organizationsOi play
σi = MJF, whereas the others playσ∗ (a single betrayal
in PD),Oi’s payoff increasesui(MJF, σ∗

−i) > ui(σ
∗), and

the others loose. If everyone plays MJF (multiple betrayal
in PD), resulting payoff for each organization is0.

When each player plays MJF, the resulting payoffs are0,
therefore everyone feels a performance drop. An instance
(Figure 2) shows that this drop can be quite high. In the
depicted instance, two processorsP1 andP2 have identical
loads: one local job of sizep1

1,1 = p1
2,2 = p andn2,1 =

n1,2 foreign jobs, each of sizepk
2,1 = pk

1,2 = ǫ. A MJF

Figure 2. An instance with one large local job
and n small foreign jobs on each processor
which leads to a price of anarchy in O(n).

schedule results in sum of completion times of:

C1(MJF) = p + (p + ǫ) + (p + 2ǫ) + · · · + (p + n1,2ǫ) =

= (n1,2 + 1)p +
1

2
ǫn1,2(n1,2 + 1),

whereas an optimal schedule, in which the small foreign
jobs are executed before the local job on both processors,
results in total completion time of:

C∗

1 = (ǫ + 2ǫ + . . . + n1,2ǫ) + (n1,2ǫ + p) =

=
1

2
ǫn1,2(n1,2 + 1) + (n1,2ǫ + p).

Theprice of anarchyPoA is the ratio between the result in
the worst Nash equilibrium and the socially-optimal result.
Note that the social optimum are SPT schedules. Note also
that in this instance, the social optimum is equal to the best
feasible result, but it is not true in the general case. The
price of anarchy is equal to:

PoA =
2C1(MJF)

2C∗

1

−→
ǫ→0

2n + 2.

This result proves that the price the grid pays for the lack of
control is very high.

Note that in real-world girds scheduling will be repeated,
in function of new jobs arriving (such systems cannot be off-
line). This would lead to multiple iterations of the game pre-
sented above. In Infinitely Repeated PD, cooperation (fol-
lowingσ

∗) becomes profitable, as a single betrayal (playing
MJF) can be punished during the next rounds by other play-
ers (by refusing to cooperate with the free-rider). Conse-
quently, finding a goodσ∗ becomes an important problem,
analyzed in the next section. However, the scheduling game
will be not repeated infinitely, as collaboration in the Grid
(e.g. in one Virtual Organization) is rather short-term, there-
fore the “shadow of the future” is reduced. In PD repeated
N times (N known to players), defection is again the only
Nash equilibrium.

4.2 Cooperative Game

In this section, we assume that the community, repre-
sented by the centralized grid scheduler, is able to im-



pose a scheduling on the players, if the resulting payoffs
u

∗ = [u1, . . . , un] arefeasible, i.e. ui ≥ 0 for each organi-
zationOi. This guarantees thatCi does not rise in compar-
ison with Ci(MJF). Moreover,u∗ should be equitably-
optimal, as no organization should be preferreda priori.

To produce such solutions, we may use EW, the same
method as in Section 3. EW must be adjusted to maximize
ui, instead of minimizingCi. We will call the adjusted algo-
rithm Game-theoretic Equitable Walk (GEW). GEW starts
with a SPT schedule. Note that such schedule is still eq-
uitable (Corollary 2 holds), as

∑

i ui =
∑

i Ci(MJF) −
∑

i Ci;
∑

i Ci(MJF) is constant andSPT minimizes
∑

i Ci, therefore maximizing the sum of all the variables.
However,SPT may not be feasible, and, generally, GEW
may be unable to produce a feasible result.

However, if players are able to form coalitions which ex-
clude some organizations, a solution guaranteeing, for all
Oi, u∗

i ≥ 0, may not be feasible . For instance, two organi-
zationsOi andOj may decide to cooperate only bilaterally,
executing jobs owned by other organizations after their jobs
(i.e. afterJi,i ∪ Ji,j ∪ Jj,i ∪ Jj,j) if the resulting pay-
offs u′

i andu′

j are greater than the respective payoffs when
everyone cooperates (u′

i > u∗

i andu′

j > u∗

j ). In game-
theoretic terms, there is no guarantee thatu

∗ belongs to the
core of the game. Such situations are analyzed by the co-
operative n-person game theory. However, this theory usu-
ally assumes that that there are side payments, by which the
coalition containing all the players may compensateOi and
Oj for cooperating with everyone. In our system, side pay-
ments may be difficult to realize without introducing exter-
nal forms of payments (money). We are currently studying
how to simulate such payments by choosing another grid
scheduleσ∗∗, which brings the payoffsu∗∗

i andu∗∗

j closer
to, respectively,u′

i andu′

j .

5 Experiments

In this section we will present preliminary experiments
demonstrating that EW and GEW deliver satisfactory re-
sults. We compared the solutions produced by both algo-
rithms to the set of equitably optimal solutions extracted
from the results of the exhaustive search (matching all
Pareto-optimal solutions for each processor). Consequently,
the instances considered are quite small, as exhaustive
search has an exponential complexity.

The number of jobsni,q and jobs’ sizespk
i,q are uni-

formly distributed over, respectively,{1, . . . , maxni,q} and
{1, . . . , max pk

i,q} (maxni,q andmax pk
i,q are parameters of

the experiment). For each combination of parameters,100
instances were generated. There were 2 organizations. Ta-
ble 1 presents aggregated results: number of instances in
which at least one solution produced by the algorithm was
equitably-dominated by one of the exhaustive search solu-

Table 1. Experimental validation of EW and
GEW. Each row is an aggregation over 100
randomized instances.

parameters # inst. equitably dom # inst. w/feasible
max ni,q max p

k
i,q EQ GEW GEW solution

3 5 2 2 99
3 10 3 4 100
3 20 4 5 100
3 50 10 7 100
4 5 4 3 100
4 10 16 11 100
4 20 12 16 100
4 50 16 12 100
5 5 1 4 99
5 10 14 16 99
5 20 33 28 100
5 50 26 24 100

tions (separately for EW and GEW); and a number of in-
stances in which GEW produced at least one feasible solu-
tion (either a solution Pareto-dominatingMJF, or MJF
in instances in which there were no exact solutions Pareto-
dominatingMJF). The first two factors measure the eq-
uity achieved by EW and GEW, the last one the “fail-safe”
mechanism of GEW (it is better to have a feasible solution,
even though it is not equitable, than no solution at all).

We can see that EW produces acceptable results. Firstly,
in slightly less than 90% of instances both algorithms pro-
duced only equitable results (although a certain degrada-
tion of results can be seen with the increase inmaxni,q

and, more surprisingly,max pk
i,q). Secondly, in all but 3 in-

stances in which it was possible to dominateMJF, GEW
produced at least one feasible solution.

6 Related Work

The mainstream of the current research on scheduling
and resource management [7] concerns systems in which
the performance of all jobs is optimized. Usually, a com-
mon metric, such as the makespanCmax, or the sum of
completion timesΣCi is optimized and thus all the jobs are
treated in a more or less equal manner.

In Grid computing,multi-criteria approaches may be
used. Different criteria usually express performance of dif-
ferent jobs [16]. A scheduling algorithm is expected to de-
liver Pareto-optimal solutions. In Section 3 we argue that
further restrictions on Pareto-optimal solutions should be
imposed in order to achieve more equitable solutions.

Grid economic approaches [5][12] analyze the problem
of resource management by market economy. Each re-
source has a (monetary) cost for its usage. Each user has
a budget to spend on executing his/her jobs. The problem
is that in highly heterogeneous settings the perfect compe-
tition assumption, stating that no single participant is able



to influence the market price, is hardly fulfilled. Real-world
grids are expected to be heterogeneous [11]. Our solutions
solve the problem of scheduling in heterogeneous systems
directly, without relying on free-market assumptions.

There were also some applications of game theory to
the problem of grid resource management. [14] proposes
a model where individual clusters (placed in e.g. different
departments of an university) are visible as a one site in
the grid. The model assumes that a job has been already
accepted for the execution by the site. [14] studies which
cluster from that site should eventually execute the job. Oth-
ers [2][15] considered the infrastructure as a common prop-
erty and the selfishness between individual jobs. We claim
that our system models better academic grids, in which a
job is viewed through the organization that has submitted it.

7 Conclusions and Future Work

In this work we have addressed the problem of resource
management in highly heterogeneous computational grids.
Our model emphasizes the miscellaneous nature of both
the resources (by considering dedicated processors) and the
users (by introducing the notion of an organization). We
analyzed the model using two approaches: equitable opti-
mization, when the grid scheduler has a complete control
over all the local schedulers; and game theory, when local
schedulers can alter their schedule. We proposed a simple
heuristics to find solutions in both cases. Then we demon-
strated that the complete decentralization may lead to a sig-
nificant performance loss of the system. Therefore, a strong
control performed by the grid community is indispensable.

We analyzed an off-line, clairvoyant problem, assump-
tions which might be considered unrealistic (yet they are
quite normal in the scheduling theory). However, the goal
of this research was rather to demonstrate certain phenom-
ena than to propose a full-featured grid scheduler. On-line
systems may use off-line algorithms to schedule jobs in
batches. Partial clairvoyance can be acheived by combin-
ing users’ run-time estimates with a prediction mechanism.

Our future work includes firstly, addressing the issue
of cooperative games with players forming arbitrary coali-
tions, and secondly, providing efficient distributed algo-
rithms for producing equitable solutions. Eventually, we
plan to extend the theoretical results to computational grids
composed of related multiprocessors (such as cluster com-
puters of different architectures) and then to implement the
solutions in real-world grid schedulers.
Acknowledgements Krzysztof Rzadca would like to thank
prof. W. Ogryczak for helpful discussions on equity.
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