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Abstract

In the past, efficient parallel algorithms have always
been developed specifically for the successive generations
of parallel systems (vector machines, shared-memory ma-
chines, distributed-memory machines, etc.). Today, due to
many reasons, such as the inherent heterogeneity, the di-
versity, and the continuous evolution of the existing parallel
execution supports, it is very hard to solve efficiently a tar-
get problem by using a single algorithm or to write portable
programs that perform well on any computational supports.
Toward this goal, we propose a generic framework based on
communication models and adaptive approaches in order to
adaptively model performances on grid computing environ-
ments. We apply this methodology on collective communi-
cation operations and show, by achieving experiments on a
real platform, that the framework provides significant per-
formances while determining the best combination model-
algorithm depending on the problem and architecture pa-
rameters.

Keywords. Cluster computing; Performance modeling;
Adaptive techniques; Polymodels of communications; Col-
lective communication operations

1. Introduction

1.1. Recent Challenges of Efficient Parallel
Algorithms

In the last years, there was a huge development in the
field of parallel and distributed processing, especially at the
architectural level leading to a wide variety of execution
supports. The major innovation was the phenomenal spread
of architectures like clusters and grids. These platforms
represent a reasonable alternative to traditional parallel ma-
chines and have become the most cost-effective computing

supports for solving a large range of high performance com-
puting applications due the good cost/performance ratio that
they provide. However, the introduction of such compu-
tational systems has a major impact on the design of effi-
cient parallel algorithms. Moreover, such parallel systems
are often upgraded with new generation of processors and
network technologies. This fact will change the balance be-
tween computations and communications.

Today, due to the increasing diversity of existing paral-
lel systems consisting on collections of heterogeneous ma-
chines, it is very difficult and mostly impossible - for a user
to choose an adequate algorithm because the execution sup-
ports are continuously evolving. One version will be well-
suited for a parallel configuration and not for another one.
This portability issue becomes crucial because of the fre-
quent changes of the components of the systems. Moreover,
the inherent heterogeneity and the diversity of networks of
such environments represent a great challenge to model and
optimize communications for high performance computing
applications. These deferent elements require to revise the
classical parallel algorithms which consider only regular ar-
chitectures with static configurations and to develop more
powerful approaches to benefit well from the capacities of
these new execution supports.

1.2. Contribution of this Work

Our objective within this work is to propose a generic
framework based on communication models and adaptive
techniques for dealing with prediction and modeling com-
munications, and integrating scalability and portability is-
sues. More precisely, the contribution of this paper is to
propose a methodology with two level adaptation. Indeed,
at the first level we proceed, given a target architecture, by
determining the more appropriate model from a set of se-
lected ones to better predicting performances. We will fi-
nally obtain a Poly-model of communication, as described



later in section 3.2. Next, we will have to determine the best
algorithm among multiple algorithmic options for resolving
a given problem.

1.3. Related Works

Our framework differs from the other works in a signif-
icant aspect. Indeed, all existing adaptive approaches pre-
sented in the literature like those of [4, 17, 15, 9] proceed
by selecting, using different techniques, one algorithm or
eventually combining from a library containing multiple al-
gorithmic choices. In [14], the authors conduct an extensive
experiment to determine the model that better represents the
execution time of collective communication operations. In-
deed, that work provides meaningful insights on the accu-
racy levels obtained with different performance models, and
the importance to avoid relying on a single model. There-
fore, to the best of our knowledge, our framework provides
the first general methodology for automatically associate
the more appropriate communication model to the best al-
gorithm among multiple model and algorithmic options. It
determines the best combination model-algorithm and com-
putes an efficient execution scheme that minimizes the over-
all execution time of a parallel application.

1.4. Organization of the Paper

The remainder of the paper is organized as follows. We
begin, in section 2, by presenting the architectural model
of the target parallel and distributed system and the perfor-
mance evaluation models of a parallel algorithm. In sec-
tion 3, we first define the concept of poly-model, present
our adaptive framework for poly-models of communication,
and detail its components. Section 4 is devoted to a case
study where we apply our adaptive framework on collec-
tive communication operations. We present indeed numer-
ical simulations and practical experiments performed on a
heterogeneous hierarchical grid proving the interest of this
work. Finally, section 5 concludes the paper and discusses
some perspectives to extend this work.

2. Preliminaries

2.1. Description of the Architectural Model

We assume in this work a generic model of a platform
composed by heterogeneous hierarchical clusters as de-
scribed in [5]. The platform studied enjoys heterogeneity
along three orthogonal axes:

1. The processors that populate the clusters may differ in
computational powers, even within the same cluster.

2. The clusters comprising the platform are organized hi-
erarchically and are interconnected via a hierarchy of
networks of possibly differing latencies, bandwidths
and speeds. At the level of physical clusters, the inter-
connection networks are assumed to be heterogeneous.

3. The clusters at each level of the hierarchy may differ
in sizes.

2.2. Adaptive Approaches

The adaptive approaches are a promising answer to the
challenges presented previously in section 1.1. The idea
is to adapt algorithms together with their execution to the
target architecture. They propose adaptive algorithms for
solving the same problem which have different behavior
and performances and to derive the best one for a target
parallel system. These algorithms may be automatically
adapted to the execution context (data and support). In a
parallel context, the adaptive algorithm should be scalable.
Indeed, it should maintain a given efficiency when the size
of the problem and the number of processors grow. Other
approaches are possible for adapting the algorithms to new
supports. For instance, adequate software can be developed
in the middleware. We are interested in this work in the
adaptability at the algorithmic level.

2.3. Communication Models

Choosing the right algorithm for solving a parallel ap-
plication requires being able to predict the performances.
There are many parallel communication models in the lit-
erature that analyze performances based on system param-
eters [10, 1, 7, 6, 8, 11, 13, 16]. More sophisticated models
have been proposed for complex architectures [5, 15]. All
these models differ on the assumptions about the compu-
tational support parameters, such as latency, heterogeneity,
network contention, etc., and therefore are able to cover a
great variety of architectures and modeling aspects. For in-
stance, the selection between these models will depend on
the data size to communicate, the models accuracy and their
relative cost (parameters acquisition and models complex-
ity). We present and summarize in Table 1 a comparison
between some of these models.

3. Description of the Adaptive Framework for
Performance Modeling

3.1. Overview of the Methodology

In this section, we describe our framework for adap-
tively modeling communications in an execution environ-



Table 1. Communication models for performance prediction
Hockney LogP LogGP LoPC LoGPC pLogP Model of [5] Model of [15]

Heterogeneous

environment
No No No No No Yes Yes Yes

Hierarchical No No No No No Yes Yes Yes

Latency α L L L L L λ L

Gap 1/β g g+G g g+G g included g

Sender overhead o o o o os π os

Receiver overhead o o o o or π or

Contention modeling No No No Yes Yes No No Yes*
* depending on the communication pattern

ment characterized by its heterogeneity and its and its hi-
erarchical organization. An overview of the methodology
is sketched in Figure 1. The processing is separated in two
successive phases. During the first one, we aim to parti-
tion the target execution platform to form subnets of sim-
ilar characteristics by automatically discover the network
topology. Then, when executing the second phase, we have
to determine for each subnet (i.e. cluster) the more ap-
propriate communication model to better predicting perfor-
mances. We will finally obtain a Poly-model of communi-
cation. In the sequel, we more detail the major components
of the framework.

3.2. Concept of Poly-Model

Generally, in order to predict and model the overhead
due to communications in a parallel application, we use a
single communication model, like, for instance, Hockney
[10], LogP [7], pLogP [11], etc. Due to the wide variety
of existing parallel machines, which requires determining
multiple parameters to get more precise results, a sophisti-
cated model is necessary. On the other hand, using such a
model on "simple" architectures is not useful due to the cost
of determining their parameters. For that reasons, we in-
troduce the concept of Poly-model which determines adap-
tively the more appropriate model for a target platform ac-
cording to the problem and architecture parameters. In fact,
the poly-model that we propose is equivalent to a combina-
tion of multiple models, to be used on different clusters. It
chooses an adequate model in terms of several information,
including the size of data to communicate, the type of in-
terconnection network (with contention or not), the number
of nodes, etc. Let us remark that the generated poly-model
which uses adaptive techniques will:

1. Better model the communications in terms of the char-
acteristics of the hardware resources of the target par-
allel system.

2. Reduces the cost of modeling parallel applications on
complex architectures.

3. Provides precise prediction results.

We finish this description by mentioning that the complexity
of the overall process of the scheme adaptation does not
affect the global cost of the application to be modeled.

3.3. Platform Partitioning

Since the target parallel system may be heterogeneous at
many levels (computing powers, interconnection network
performances, etc), it is very difficult to manage such plat-
form towards a high performance computing. One way to
answer this problem and to minimize the inherent hetero-
geneity is to subdivide the network in homogeneous sub-
nets (or logical clusters), as described below. At the end of
this phase, we will get a set of logical clusters of homoge-
neous nodes and accurate interconnection network, which
will be used to adaptively modeling communications inside
each cluster during the second phase of the framework.

Network Performance Measurements
The framework starts by collecting available information
from the target execution environment to be used in the step
of clustering (see next section). There exist many tools for
network monitoring, such as NWS (Network Weather Ser-
vice) [18]. These tools permit to determine many useful
parameters of the target parallel system like the current net-
work status, the communication latency, the speeds of the
processors, the CPU load, the available memory, etc. For
instance, the communication latency and throughput permit
to identify groups of machines with similar communication
parameters.

Clustering
One reason to construct logical clusters is that machines
may behave differently, and the easiest way to optimize
communications is to group machines with similar perfor-
mances [2, 15]. In order to classify nodes in logical clusters,
we can use a clustering algorithm similar to the one pre-
sented in [12]. This algorithm analyzes each interconnec-
tion on the distance matrix containing the latencies between
links in order to group nodes for which their incident edges
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Figure 1. Adaptive framework.

respect a latency bound (by default 20%) inside that subnet.
Note that the distance matrix was obtained when applying
NWS on the clusters to determine the network information.

3.4. Adaptive Modeling

Once the platform is partitioned in separated homoge-
neous hierarchical clusters, we determine, using an adaptive
approach, an adequate model from the set of selected mod-
els for each cluster. Indeed, we modeled and implemented
several algorithms from the literature, which perform differ-
ently according to the network environment. By selecting
the best adapted algorithm to each different cluster in our
grid, we contribute to a poly-algorithmic modeling of com-
munications in a grid environment. Any necessary charac-
teristics are measured during the first phase corresponding
to the network partitioning. We recall that the algorithm se-
lection is made in terms of information which is interesting
to the problem, such as the size of data to communicate, the
type of interconnection network, the number of nodes, etc.

It is also important to take into account the cost involved
on the acquisition of models parameters. For instance,
both LogP and LogGP models rely on a reduced number
of measurements (they extrapolate the cost per byte from a

few measurements), while pLogP requires several measure-
ments to cover a large range of message sizes. Hence, while
the later model is most expensive, it can be more precise
when the communication cost does not varies linearly with
the message size (a typical case with MPI, whose transmis-
sion policies depend on the message size).

For instance, we are able to define a communication
schedule that minimizes the overall execution time through
the analysis of the inter-cluster communication perfor-
mance and the intra-cluster performance prediction. Once
again we implement different schedule policies, which
are selected according to their estimated termination time.
The framework allows, indeed, implementing scheduling
heuristics that perform on different communication levels
according to the target communication pattern.

4. Application on Collective Communications

We apply our adaptive framework on collective com-
munication operations by determining the best combination
model-algorithm depending on the problem and architec-
ture parameters. We refer here by algorithm a possible
method to resolve the operation, as for example Pipeline,
Binomial, Binary and Linear for Broadcast. At this level,
our framework automatically associates the more appropri-
ate model to the best algorithm among multiple model and
algorithmic options.

Collective communication operations encompass a wide
range of possible algorithms. The optimal implementation
of such operations for a given parallel system depends on
many factors, including for example, physical topology of
the system, number of processes involved, message sizes,
and the location of the root node [14, 15]. Figure 2 shows
how to implement a collective communication operation us-
ing our framework. Indeed, the adaptive algorithm selection
is based on two types of models: the analytical and experi-
mental ones. Experimental techniques use information de-
rived from previous operation executions to optimize pro-
cessing for future problem instances, a service similar to an
optimization cache. The analytical models will be useful to
validate actual versus predicted performances.

4.1. Description of the Execution Platform

We have considered a Grid platform from to the project
Grid’50001 to achieve our experiments. The architecture
is initially composed of four clusters, distributed over sites
in France: GRENOBLE, ORSAY, SOPHIA-ANTIPOLIS
and TOULOUSE. This platform will first be partitioned
into logical homogeneous clusters. The latencies intra and
inter-clusters are presented in Table 2.

1http://www.GRID5000.fr
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Figure 2. Execution of a collective communication operation using the framework.

Table 2. Latency (microseconds) intra and inter-clusters.
C1 C21 C22 C23 C3 C4

20 x Orsay 11 x Grenoble 7 x Grenoble 1 x Grenoble 20 x Toulouse 19 x Sophia

C1 48.39 6577.49 6586.49 6592.51 5211.94 8602.73

C21 6577.49 35.52 59.96 59.96 5387.48 2736.56

C22 6586.49 59.96 60.08 79.51 5393.98 2740.26

C23 6592.51 59.96 79.51 0∗ 5405.78 2745.98

C3 5211.94 5387.48 5393.98 5405.78 26.94 3630.51

C4 8602.73 2736.56 2740.26 2745.98 3630.51 35.04
* this "logical cluster" has only one machine.

Figure 3. Grid’5000 sites.

4.2. Network Partitioning

We applied our approach on a target parallel system com-
posed of four clusters - C1 (20 machines ORSAY), C2
(19 machines GRENOBLE), C3 (19 machines SOPHIA-
ANTIPOLIS) and C4 (20 machines TOULOUSE) with two
levels of hierarchy distributed over four sites in France. Fig-
ure 3 shows the organization of the clusters.

The first phase of the framework leads to a new organi-
zation of the machines (see Figure 4). The cluster C2 will
be partitioned into three sub-clusters, C21 (11 machines),
C22 (1 machine) and C23 (7 machines), according to the
latencies of the links between machines. Once the cluster-
ing phase is done, we have six logical clusters with homo-
geneous resources.

4.3. Model Selection

We have considered the Broadcast operation. With
Broadcast, a single process, called root, sends the same

Figure 4. Platform after partitioning.

message of size m to all other (P − 1) processes. Clas-
sical implementations of the Broadcast operation rely on
fixed shapes such as Linear (Flat Tree) for small number
of nodes and Binomial Trees for P > 3.

In our work we developed the communication models
for some current techniques and their “flavors”, which are
presented on Table 3 in terms of pLogP parameters (which
can be easily adapted to other models such as LogP and
LogGP). Hence, we chose to compare in this paper four of
the most known techniques, namely the Linear, the Binary,
the Binomial and the Pipeline Broadcasts. Indeed, we per-
form the MPI_Bcast optimization in two hierarchical levels,
as described below:



Table 3. Communication models for the
Broadcast operation

Strategy Communication Model

Linear (Flat Tree) L + (P − 1) × g(m)

Segmented Chain

(Pipeline)
(P − 1) × (g(s) + L) + (g(s) × (k − 1))

Binary Tree ≤ �log2P � × (2 × g(m) + L)

Binomial Tree �log2P � × L + �log2P � × g(m)

First hierarchical level:
First, we deal with local-area communications, where a
cluster "coordinator" will be charged to broadcast locally
the message to all processes composing the cluster. Later,
we integrate these clusters through the generation of effi-
cient inter-cluster communication schedules.

Therefore, at the first hierarchical level, we proceed
by selecting the most appropriate performance model and
broadcast algorithm for each cluster according to two steps:

Poly-adapt-1: For a given problem (message size and
number of processes) and for each implementation
algorithm, we select the most accurate performance
model such that its predictions correspond to our base
of experimentations;

Poly-adapt-2: From the performance models selected in
the previous step we select the most efficient imple-
mentation algorithm (i.e., the algorithm that terminates
earlier).

For instance, we select the algorithm that minimizes the
completion time of the operation, as summarized in Table 4,
using the most accurate performance model for each prob-
lem instance (as we can observe in Figure 5).

Second hierarchical level:
Once Poly-adapt-2 selected the best algorithm for each
cluster, we must determine an efficient inter-cluster commu-
nication scheduling. Using inter-cluster communication pa-
rameters, we can construct an optimized broadcast tree be-
tween clusters using scheduling heuristics, an approach that
provides better performances on grid environments than tra-
ditional grid-unaware algorithms found on most MPI distri-
butions [3].

Indeed, in this example we rely on the Early Completion
Edge First - ECEF heuristic, proposed by [4]. This heuris-
tic proceeds by selecting a pair sender-receiver where the
sender is available and the choice of the sender-receiver pair
depends on the earliest possible moment when this trans-
mission may effectively be finished. Therefore, we use a
Ready Time (RTi) parameter, evaluated conjointly with the

transmission time between the processes, such that the pair
i, j minimizes the following expression:

t = RTi + gi,j(m) + Li,j

We can eventually integrate the communication time in-
side each cluster, as stated by the ECEF-LAt heuristic [3],
where the communication schedule minimizes the overall
broadcast time by taking into account both inter and intra-
cluster communication times

4.4. Performance Analysis

As stated above, our politic of performance evaluation
consists in implementing the broadcast when applying a
one level of adaptation on the poly-model, i.e. choosing the
more appropriate model with a fixed algorithm (Poly-adapt-
1), and then a second level of adaptation, i.e. both model
and algorithm are adaptive (Poly-adapt-2). Therefore, Fig-
ure 5 represents the completion time of a broadcast executed
with different algorithms on the ORSAY clusters with dif-
ferent message sizes. We denote by Poly1 the first adap-
tation and Poly2 our full adaptation. The curves show that
Poly1 adapts to the performance model that closely predicts
the performance of real experiences kept in our experiments
base. Similarly, Poly2 represents the expected performance
of the best algorithm, proving the interest of the two-level
adaptation. Indeed, this two-level adaptation mechanism is
applied at each cluster, giving therefore the fastest imple-
mentation strategy for each environment.

As a result, Figure 6 depicts the completion time of a
broadcast executed on two layers with Poly2 and the ECEF
heuristic on the global platform composed by many clus-
ters of different characteristics and network hierarchies. We
observe that the optimized broadcast operation easily out-
performs the traditional "grid-unaware" binomial broadcast
implemented on most MPI distributions, and giving this ex-
ample, we proceed at least twice as fast as the binomial tree.
Summing up, the obtained results confirm the remarks men-
tioned previously, concerning the power and the benefits of
a multi-level adaptive approach.

5. Concluding Remarks and Future Works

We have presented in this paper a new adaptive frame-
work for dealing with performance modeling on grid com-
puting platforms. The proposed methodology, based on
communication models and adaptive approaches, proceeds
in two level adaptation to automatically associate the more
appropriate model to the best algorithm among multiple
model and algorithmic options for each part of a large par-
allel execution support being used. The best identified
combination model-algorithm and the determined execution
scheme permit to minimize the overall execution time of a



Table 4. Summarize of the adaptive execution scheme for m=8kB and m=512kB.
Cluster C1 C21 C22 C23 C3 C4 inter-clusters

m=8k
Selected model LogP LogP - LogP LogP LogP Hierarchical [3]

Selected algorithm binomial binomial linear binomial binomial binomial ECEF

m=512k
Selected model LogGP pLogP - pLogP pLogP pLogP Hierarchical [3]

Selected algorithm pipeline pipeline linear pipeline pipeline pipeline ECEF
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Figure 5. Completion time of Broadcast in the cluster ORSAY: (a) Linear, (B) Pipeline, (c) Binary and
(d) Binomial
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target problem. This approach was applied on an important
collective communication pattern, the broadcast operation,
proving the interest of a multilevel adaptive approach and
the worthy of this work.

As future prospects, we intend to perform experiments
on other collective communication operations, and apply
the framework on other types of target problems. We also
plan to integrate other existing adaptive approaches to our
framework to benefit well from the powerful of these tech-
niques. Further, we intend to evaluate the impact of our
framework on the performance of real scientific applica-
tions which perform intensive communication among the
nodes.
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